Pregled bibliografske jedinice broj: 650198
Use of machine learning for determining phytoplankton dynamic on station RV001 in front of Rovinj (northern Adriatic)
Use of machine learning for determining phytoplankton dynamic on station RV001 in front of Rovinj (northern Adriatic) // Engineering review : znanstveni časopis za nove tehnologije u strojarstvu, brodogradnji i elektrotehnici, 34 (2014), 181-187 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 650198 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Use of machine learning for determining
phytoplankton dynamic on station RV001 in front of
Rovinj (northern Adriatic)
Autori
Volf, Goran ; Kompare, Boris ; Ožanić, Nevenka
Izvornik
Engineering review : znanstveni časopis za nove tehnologije u strojarstvu, brodogradnji i elektrotehnici (1330-9587) 34
(2014);
181-187
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Northern Adriatic ; Machine learning ; Phytoplankton
Sažetak
The paper describes the use of machine learning for modeling phytoplankton on data from station RV001 in front of Rovinj which well represents the main processes in the open northern Adriatic (NA). NA is the shallowest, and also one of the most productive areas in the Adriatic Sea, as well as in the entire Mediterranean. In order to contribute to the understanding of phytoplankton dynamic in the NA, on data covering physical, biological and chemical parameters machine learning (ML) techniques were used. The final result is the construction of the models in the form of regression and model trees, respectively ; there were constructed models that explain the dynamics of phytoplankton concentrations on mentioned station as a result of independent environmental variables. Models in an affordable way combine and show knowledge collected by measurements during 35 year period, which contributes to a better understanding of the functioning of the NA ecosystem.
Izvorni jezik
Engleski
Znanstvena područja
Građevinarstvo
POVEZANOST RADA
Projekti:
MZOS-114-0982709-2549 - HIDROLOGIJA OSJETLJIVIH VODNIH RESURSA U KRŠU (Ožanić, Nevenka, MZOS ) ( CroRIS)
Ustanove:
Građevinski fakultet, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus