Pregled bibliografske jedinice broj: 648014
Asymptotic formulae associated with the Wallis power function and digamma function
Asymptotic formulae associated with the Wallis power function and digamma function // Journal of classical analysis, 2 (2013), 2; 151-166 doi:10.7153/jca-02-13 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 648014 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Asymptotic formulae associated with the Wallis
power function and digamma function
Autori
Chao-Ping Chen ; Elezović, Neven ; Vukšić, Lenka
Izvornik
Journal of classical analysis (1848-5979) 2
(2013), 2;
151-166
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Gamma function ; digamma (psi) function ; Bernoulli polynomials ; Asymptotic expansions
Sažetak
Let $s, t$ be two given real numbers, $s\not=t$. We determine the coefficients $c_j(s, t)$ such that [\frac{; ; ; ; \Gamma(x+t)}; ; ; ; {; ; ; ; \Gamma(x+s)}; ; ; ; ]^{; ; ; ; 1/(t-s)}; ; ; ; \sim\exp(\psi(x+\sum_{; ; ; ; j=0}; ; ; ; ^{; ; ; ; \infty}; ; ; ; c_j(s, t)x^{; ; ; ; -j}; ; ; ; ))) as $x\to\infty$, where $\psi(x)=\Gamma'(x)/\Gamma(x)$ denotes the digamma function. Also, the analysis of the coefficients in the asymptotic expansion of the composition $\exp(\psi(x+s))$ is given in details.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZO-ZP-036-1170889-1054 - Ocjene suma, integrala i integralnih transformacija (Elezović, Neven, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb