Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 645448

Development of gradient retention model in ion chromatography. Part II: Artificial intelligence QSRR approach


Vlahović, Ana; Novak, Mirjana; Ukić, Šime; Bolanča, Tomislav
Development of gradient retention model in ion chromatography. Part II: Artificial intelligence QSRR approach // 19th International Symposium on Separation Sciences, New Achievement in Chromatography, Book of Abstracts / Ukić, Šime ; Bolanča, Tomislav (ur.).
Zagreb: Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI), 2013. str. 162-162 (poster, međunarodna recenzija, sažetak, ostalo)


CROSBI ID: 645448 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Development of gradient retention model in ion chromatography. Part II: Artificial intelligence QSRR approach

Autori
Vlahović, Ana ; Novak, Mirjana ; Ukić, Šime ; Bolanča, Tomislav

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, ostalo

Izvornik
19th International Symposium on Separation Sciences, New Achievement in Chromatography, Book of Abstracts / Ukić, Šime ; Bolanča, Tomislav - Zagreb : Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI), 2013, 162-162

ISBN
978-953-6470-64-8

Skup
19th International Symposium on Separation Sciences, New Achievements in Chromatography

Mjesto i datum
Poreč, Hrvatska, 25.09.2013. - 28.09.2013

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
QSRR; ion chromatography; sugar analysis; retention prediction; articial intelligence

Sažetak
Quantitative Structure-Retention Relationships, QSRR, is a common name for methodology that is predicting chromatographic retention time explicitly on basis of analytes’ molecular- structure. Application of these models can generally short the selection-time for propriate method when dealing with other similar analytes, or can replace the time-consuming “trial and error” approach in method optimization. In this work, artificial intelligence was applied in order to develop good QSRR model. The genetic algorithm was used for selection of the most appropriate molecular descriptors, i.e. descriptors with the highest content of useful information. Artificial neural networks, which are generally known as universal approximators, were taken as QSRR models. The QSRR models were developed for several isocratic elutions, all indicating good prediction ability. The results of QSRR prediction were used for development of isocratic retention model, providing prediction over whole domain of isocratic elutions. In order to enable prediction for gradient elutions, a gradient model based on isocratic data was applied. Although the results indicated slight systematic error, the prediction remained satisfactory good.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Kemijsko inženjerstvo



POVEZANOST RADA


Projekti:
125-1253092-3004 - Procesi ionske izmjene u sustavu kvalitete industrijskih voda (Bolanča, Tomislav, MZOS ) ( CroRIS)

Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb


Citiraj ovu publikaciju:

Vlahović, Ana; Novak, Mirjana; Ukić, Šime; Bolanča, Tomislav
Development of gradient retention model in ion chromatography. Part II: Artificial intelligence QSRR approach // 19th International Symposium on Separation Sciences, New Achievement in Chromatography, Book of Abstracts / Ukić, Šime ; Bolanča, Tomislav (ur.).
Zagreb: Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI), 2013. str. 162-162 (poster, međunarodna recenzija, sažetak, ostalo)
Vlahović, A., Novak, M., Ukić, Š. & Bolanča, T. (2013) Development of gradient retention model in ion chromatography. Part II: Artificial intelligence QSRR approach. U: Ukić, Š. & Bolanča, T. (ur.)19th International Symposium on Separation Sciences, New Achievement in Chromatography, Book of Abstracts.
@article{article, author = {Vlahovi\'{c}, Ana and Novak, Mirjana and Uki\'{c}, \v{S}ime and Bolan\v{c}a, Tomislav}, year = {2013}, pages = {162-162}, keywords = {QSRR, ion chromatography, sugar analysis, retention prediction, articial intelligence}, isbn = {978-953-6470-64-8}, title = {Development of gradient retention model in ion chromatography. Part II: Artificial intelligence QSRR approach}, keyword = {QSRR, ion chromatography, sugar analysis, retention prediction, articial intelligence}, publisher = {Hrvatsko dru\v{s}tvo kemijskih in\v{z}enjera i tehnologa (HDKI)}, publisherplace = {Pore\v{c}, Hrvatska} }
@article{article, author = {Vlahovi\'{c}, Ana and Novak, Mirjana and Uki\'{c}, \v{S}ime and Bolan\v{c}a, Tomislav}, year = {2013}, pages = {162-162}, keywords = {QSRR, ion chromatography, sugar analysis, retention prediction, articial intelligence}, isbn = {978-953-6470-64-8}, title = {Development of gradient retention model in ion chromatography. Part II: Artificial intelligence QSRR approach}, keyword = {QSRR, ion chromatography, sugar analysis, retention prediction, articial intelligence}, publisher = {Hrvatsko dru\v{s}tvo kemijskih in\v{z}enjera i tehnologa (HDKI)}, publisherplace = {Pore\v{c}, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font