Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 642791

Boundary Harnack principle and Martin boundary at infinity for subordinate Brownian motions


Kim, Panki; Song, Renming; Vondraček, Zoran
Boundary Harnack principle and Martin boundary at infinity for subordinate Brownian motions // Potential analysis, 41 (2014), 2; 407-441 doi:10.1007/s11118-013-9375-4 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 642791 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Boundary Harnack principle and Martin boundary at infinity for subordinate Brownian motions

Autori
Kim, Panki ; Song, Renming ; Vondraček, Zoran

Izvornik
Potential analysis (0926-2601) 41 (2014), 2; 407-441

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Levy processes ; subordinate Brownian motion ; harmonic functions ; boundary Harnack principle ; Martin kernel ; Martin boundary ; Poisson kernel

Sažetak
In this paper we study the Martin boundary of unbounded open sets at infinity for a large class of subordinate Brownian motions. We first prove that, for such subordinate Brownian motions, the uniform boundary Harnack principle at infinity holds for arbitrary unbounded open sets. Then we introduce the notion of $\kappa$-fatness at infinity for open sets and show that the Martin boundary at infinity of any such open set consists of exactly one point and that point is a minimal Martin boundary point.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
MZOS-037-0372790-2801 - Slučajni procesi sa skokovima (Vondraček, Zoran, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Zoran Vondraček (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com link.springer.com

Citiraj ovu publikaciju:

Kim, Panki; Song, Renming; Vondraček, Zoran
Boundary Harnack principle and Martin boundary at infinity for subordinate Brownian motions // Potential analysis, 41 (2014), 2; 407-441 doi:10.1007/s11118-013-9375-4 (međunarodna recenzija, članak, znanstveni)
Kim, P., Song, R. & Vondraček, Z. (2014) Boundary Harnack principle and Martin boundary at infinity for subordinate Brownian motions. Potential analysis, 41 (2), 407-441 doi:10.1007/s11118-013-9375-4.
@article{article, author = {Kim, Panki and Song, Renming and Vondra\v{c}ek, Zoran}, year = {2014}, pages = {407-441}, DOI = {10.1007/s11118-013-9375-4}, keywords = {Levy processes, subordinate Brownian motion, harmonic functions, boundary Harnack principle, Martin kernel, Martin boundary, Poisson kernel}, journal = {Potential analysis}, doi = {10.1007/s11118-013-9375-4}, volume = {41}, number = {2}, issn = {0926-2601}, title = {Boundary Harnack principle and Martin boundary at infinity for subordinate Brownian motions}, keyword = {Levy processes, subordinate Brownian motion, harmonic functions, boundary Harnack principle, Martin kernel, Martin boundary, Poisson kernel} }
@article{article, author = {Kim, Panki and Song, Renming and Vondra\v{c}ek, Zoran}, year = {2014}, pages = {407-441}, DOI = {10.1007/s11118-013-9375-4}, keywords = {Levy processes, subordinate Brownian motion, harmonic functions, boundary Harnack principle, Martin kernel, Martin boundary, Poisson kernel}, journal = {Potential analysis}, doi = {10.1007/s11118-013-9375-4}, volume = {41}, number = {2}, issn = {0926-2601}, title = {Boundary Harnack principle and Martin boundary at infinity for subordinate Brownian motions}, keyword = {Levy processes, subordinate Brownian motion, harmonic functions, boundary Harnack principle, Martin kernel, Martin boundary, Poisson kernel} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font