Pregled bibliografske jedinice broj: 642615
Learning control for positionally controlled manipulators
Learning control for positionally controlled manipulators // Proceedings of the 22nd International Workshop on Robotics in Alpe-Adria-Danube Region / Bojan Nemec ; Leon Žlajpah (ur.).
Ljubljana: Institut Jožef Stefan, 2013. str. 17-24 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 642615 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Learning control for positionally controlled manipulators
Autori
Domagoj Herceg ; Dana Kulić ; Ivan Petrović
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 22nd International Workshop on Robotics in Alpe-Adria-Danube Region
/ Bojan Nemec ; Leon Žlajpah - Ljubljana : Institut Jožef Stefan, 2013, 17-24
ISBN
978-961-264-064-4
Skup
22nd International Workshop on Robotics in Alpe- Adria-Danube Region (RAAD 2013)
Mjesto i datum
Portorož, Slovenija, 2013
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Robot Manipulators; Learning Control; Gaussian Process Regression
Sažetak
The majority of the widely available robotic arms employ the joint position control paradigm. Additionally, these kind of arms are usually closed architecture, meaning that the user has little knowledge or control over the inner workings of the controller. The user can only specify a position trajectory that the arm needs to follow. In the unstructured environment this can be a serious drawback. By exploiting the knowledge of the system, the performance of the closed architecture robotic arm system can be improved. Recently, nonparametric regression methods have been shown to improve performance of torque controlled arms. In this paper, we investigate the effectiveness of those methods in the case of closed architecture robotics arms. We apply Gaussian Process Regression (GPR) to learn the dynamic model between the input and the output signal, including the dynamics of the robot plant and controller. We also consider a sparse variant of GPR, called Sparse Spectrum Gaussian Process Regression, which enables faster training and prediction times. It is demonstrated by simulation that the proposed approach significantly enhances the trajectory following performance of closed architecture robotic arms.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Projekti:
036-0363078-3018 - Upravljanje mobilnim robotima i vozilima u nepoznatim i dinamičkim okruženjima (Petrović, Ivan, MZO ) ( CroRIS)
ACROSS
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb