Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 642086

Sparse $\varepsilon$-tube Support Vector Regression by Active Learning


Čeperić, Vladimir; Gielen, Georges; Barić, Adrijan
Sparse $\varepsilon$-tube Support Vector Regression by Active Learning // Soft computing, 18 (2014), 6; 1113-1126 doi:10.1007/s00500-013-1131-6 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 642086 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Sparse $\varepsilon$-tube Support Vector Regression by Active Learning

Autori
Čeperić, Vladimir ; Gielen, Georges ; Barić, Adrijan

Izvornik
Soft computing (1432-7643) 18 (2014), 6; 1113-1126

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Support vector machines; Support vector regression; Sparse regression models; Active learning

Sažetak
A method for the sparse solution of $\varepsilon$-tube support vector regression machines is presented. The proposed method achieves a high accuracy versus complexity ratio and allows the user to adjust the complexity of the resulting models. The sparse representation is guaranteed by limiting the number of training data points for the support vector regression method. Each training data point is selected based on its influence on the accuracy of the model using the active learning principle. The training time can be adjusted by the user by selecting how often the hyper-parameters of the algorithm are optimised. The advantages of the proposed method are illustrated on several examples. The algorithm performance is compared with the performance of several state-of-the-art algorithms on the well-known benchmark data sets. The application of the proposed algorithm for the black-box modelling of the electronic circuits is also demonstrated. The experiments clearly show that it is possible to reduce the number of support vectors and significantly improve the accuracy versus complexity ratio of $\varepsilon$-tube support vector regression.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
036-0361621-1622 - Kvaliteta signala u integriranim sklopovima s mješovitim signalom (Barić, Adrijan, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Adrijan Barić (autor)

Avatar Url Vladimir Čeperić (autor)

Poveznice na cjeloviti tekst rada:

doi dx.doi.org link.springer.com

Citiraj ovu publikaciju:

Čeperić, Vladimir; Gielen, Georges; Barić, Adrijan
Sparse $\varepsilon$-tube Support Vector Regression by Active Learning // Soft computing, 18 (2014), 6; 1113-1126 doi:10.1007/s00500-013-1131-6 (međunarodna recenzija, članak, znanstveni)
Čeperić, V., Gielen, G. & Barić, A. (2014) Sparse $\varepsilon$-tube Support Vector Regression by Active Learning. Soft computing, 18 (6), 1113-1126 doi:10.1007/s00500-013-1131-6.
@article{article, author = {\v{C}eperi\'{c}, Vladimir and Gielen, Georges and Bari\'{c}, Adrijan}, year = {2014}, pages = {1113-1126}, DOI = {10.1007/s00500-013-1131-6}, keywords = {Support vector machines, Support vector regression, Sparse regression models, Active learning}, journal = {Soft computing}, doi = {10.1007/s00500-013-1131-6}, volume = {18}, number = {6}, issn = {1432-7643}, title = {Sparse $\varepsilon$-tube Support Vector Regression by Active Learning}, keyword = {Support vector machines, Support vector regression, Sparse regression models, Active learning} }
@article{article, author = {\v{C}eperi\'{c}, Vladimir and Gielen, Georges and Bari\'{c}, Adrijan}, year = {2014}, pages = {1113-1126}, DOI = {10.1007/s00500-013-1131-6}, keywords = {Support vector machines, Support vector regression, Sparse regression models, Active learning}, journal = {Soft computing}, doi = {10.1007/s00500-013-1131-6}, volume = {18}, number = {6}, issn = {1432-7643}, title = {Sparse $\varepsilon$-tube Support Vector Regression by Active Learning}, keyword = {Support vector machines, Support vector regression, Sparse regression models, Active learning} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font