Pregled bibliografske jedinice broj: 641986
On the $l_s$-norm generalization of the NLS method for the Bass model
On the $l_s$-norm generalization of the NLS method for the Bass model // European journal of pure and applied mathematics, 6 (2013), 4; 435-450 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 641986 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the $l_s$-norm generalization of the NLS method for the Bass model
Autori
Jukić, Dragan
Izvornik
European journal of pure and applied mathematics (1307-5543) 6
(2013), 4;
435-450
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Bass model; diffusion; $l_s$-norm estimate; Least squares estimate; Existence problem; Data fitting
Sažetak
The best-known and widely used model in diffusion research is the Bass model. Estimation of its parameters has been approached in the literature by various methods, among which a very popular one is the nonlinear least squares (NLS) method proposed by Srinivasan and Mason. In this paper, we consider the $l_s$-norm $(1\leq s<\infty)$ generalization of the NLS method for the Bass model. Our focus is on the existence of the corresponding best $l_s$-norm estimate. We show that it is possible for the best $l_s$-norm estimate not to exist. As a main result, two theorems on the existence of the best $l_s$-norm estimate are obtained. One of them gives necessary and sufficient conditions which guarantee the existence of the best $l_s$-norm estimate.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Ekonomija
POVEZANOST RADA
Projekti:
235-2352818-1034 - Nelinearni problemi procjene parametara u matematičkim modelima (Jukić, Dragan, MZOS ) ( CroRIS)
235-2352818-1039 - Statistički aspekti problema procjene u nelinearnim parametarskim modelima (Benšić, Mirta, MZOS ) ( CroRIS)
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Profili:
Dragan Jukić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts