Pregled bibliografske jedinice broj: 641576
Efficient Algorithm for Simultaneous Reduction to the m-Hessenberg–Triangular–Triangular Form
Efficient Algorithm for Simultaneous Reduction to the m-Hessenberg–Triangular–Triangular Form // BIT numerical mathematics, 55 (2015), 3; 677-703 doi:10.1007/s10543-014-0516-y (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 641576 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Efficient Algorithm for Simultaneous Reduction to the m-Hessenberg–Triangular–Triangular Form
Autori
Bosner, Nela
Izvornik
BIT numerical mathematics (0006-3835) 55
(2015), 3;
677-703
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
m-Hessenberg–triangular–triangular form ; orthogonal transformations ; level 3 BLAS ; blocked algorithm ; solving shifted system ; transfer function evaluation ; staircase form
Sažetak
This paper proposes an efficient algorithm for simultaneous reduction of three matrices. The algorithm is a blocked version of the algorithm described by Miminis and Page (1982) which reduces A to the m-Hessenberg form, and B and E to the triangular form. The m-Hessenberg--triangular--triangular form of matrices A, B and E is specially suitable for solving multiple shifted systems. Such shifted systems naturally occur in control theory when evaluating the transfer function of a descriptor system, or in interpolatory model reduction methods. They also arise as a result of discretization of the time-harmonic wave equation in heterogeneous media, or originate from structural dynamics engineering problems. The proposed blocked algorithm for the m-Hessenberg--triangular--triangular reduction is based on the aggregated Givens rotations, which are a generalization of the blocked algorithm for the Hessenberg--triangular reduction proposed by Kagstrom et al. (2008). Numerical tests confirmed that the blocked algorithm is up to 3.4 times faster than its non-blocked version based on regular Givens rotations only. As an illustration of its efficiency, two applications of the m-Hessenberg--triangular--triangular reduction coming from control theory are described: evaluation of the transfer function of a descriptor system at many complex values, and computation of the staircase form used to identify the controllable part of the system.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZOS-037-0372783-2750 - Spektralne dekompozicije - numericke metode i primjene (Drmač, Zlatko, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Nela Bosner
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts