Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 641302

On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions


Avram, Florin; Leonenko, Nikolai, Šuvak, Nenad
On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions // Monografias del Seminario Matematicom Garcia de Galdeano, Proceedings of The Pyrenees International Workshop on Statistics, Probability and OR
Jaca, Španjolska, 2013. str. 33-42 (ostalo, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 641302 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions

Autori
Avram, Florin ; Leonenko, Nikolai, Šuvak, Nenad

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Monografias del Seminario Matematicom Garcia de Galdeano, Proceedings of The Pyrenees International Workshop on Statistics, Probability and OR / - , 2013, 33-42

Skup
The Pyrenees International Workshop on Statistics, Probability and Operations Research

Mjesto i datum
Jaca, Španjolska, 12.09.2007. - 15.09.2007

Vrsta sudjelovanja
Ostalo

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Diffusion process; Infinitesimal generator; Kolmogorov-Pearson diffusion; Sturm-Liouville equation; Transition density.

Sažetak
The self-adjointness of the semigroup generator of one dimensional diffusions implies a spectral representation which has found many useful applications, for example in mathematical finance. However, on non-compact state spaces, the spectrum of the generator will typically include both a discrete and a continuous part, with the latter starting at a spectral cutoff point related to the nonexistence of stationary moments. The signifi- cance of this fact for statistical estimation is still not fully understood. We consider here the problem of spectral representation of the transition density for an interesting class of diffusions: the hypergeometric1 diffusions with heavy-tailed Pearson type invariant distribution, to be called Kolmogorov-Pearson diffusions (Reciprocal (inverse) gamma, Fisher-Snedecor and skew-Student diffusions). As opposed to the "classic" hypergeometric diffusions (Ornstein-Uhlebeck, Gamma/CIR, Beta/Jacobi), these diffusions have a continuous part of the spectrum, whose spectral cutoff and transition density we provide in an explicit form.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
235-2352818-1039 - Statistički aspekti problema procjene u nelinearnim parametarskim modelima (Benšić, Mirta, MZOS ) ( CroRIS)

Ustanove:
Sveučilište u Osijeku, Odjel za matematiku


Citiraj ovu publikaciju:

Avram, Florin; Leonenko, Nikolai, Šuvak, Nenad
On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions // Monografias del Seminario Matematicom Garcia de Galdeano, Proceedings of The Pyrenees International Workshop on Statistics, Probability and OR
Jaca, Španjolska, 2013. str. 33-42 (ostalo, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Avram, F. & Leonenko, Nikolai, Šuvak, Nenad (2013) On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions. U: Monografias del Seminario Matematicom Garcia de Galdeano, Proceedings of The Pyrenees International Workshop on Statistics, Probability and OR.
@article{article, author = {Avram, Florin}, year = {2013}, pages = {33-42}, keywords = {Diffusion process, Infinitesimal generator, Kolmogorov-Pearson diffusion, Sturm-Liouville equation, Transition density.}, title = {On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions}, keyword = {Diffusion process, Infinitesimal generator, Kolmogorov-Pearson diffusion, Sturm-Liouville equation, Transition density.}, publisherplace = {Jaca, \v{S}panjolska} }
@article{article, author = {Avram, Florin}, year = {2013}, pages = {33-42}, keywords = {Diffusion process, Infinitesimal generator, Kolmogorov-Pearson diffusion, Sturm-Liouville equation, Transition density.}, title = {On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions}, keyword = {Diffusion process, Infinitesimal generator, Kolmogorov-Pearson diffusion, Sturm-Liouville equation, Transition density.}, publisherplace = {Jaca, \v{S}panjolska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font