Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 641295

On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions


Avram, Florin; Leonenko, Nikolai; Šuvak, Nenad
On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions // Markov Processes and Related Fields, 19 (2013), 2; 249-298 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 641295 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions

Autori
Avram, Florin ; Leonenko, Nikolai ; Šuvak, Nenad

Izvornik
Markov Processes and Related Fields (1024-2953) 19 (2013), 2; 249-298

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
diffusion process; infinitesimal generator; Kolmogorov – Pearson diffusion; Sturm – Liouville equation; transition density

Sažetak
The self-adjointness of the semigroup generator of one dimensional diffusions implies a spectral representation (see [33, 50]) which has found many useful applications, for example for the prediction of second order stationary sequences (see [18]) and in mathematical finance (see [47]). However, on noncompact state spaces the spectrum of the generator will typically include both a discrete and a continuous part, with the latter starting at a spectral cutoff point related to the nonexistence of stationary moments. The significance of this fact for statistical estimation is not yet fully understood. We consider here the problem of spectral representation of transition density for an interesting class of examples: the hypergeometric diffusions with heavytailed Pearson type invariant distribution of a) reciprocal (inverse) gamma, b) Fisher – Snedecor, or c) skew-Student type. As opposed to the “classic” hypergeometric diffusions (Ornstein – Uhlebeck, Gamma/CIR, Beta/Jacobi), these diffusions have a continuum spectrum, whose spectral cutoff and transition density we present in this paper.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Sveučilište u Osijeku, Odjel za matematiku

Profili:

Avatar Url Nenad Šuvak (autor)


Citiraj ovu publikaciju:

Avram, Florin; Leonenko, Nikolai; Šuvak, Nenad
On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions // Markov Processes and Related Fields, 19 (2013), 2; 249-298 (međunarodna recenzija, članak, znanstveni)
Avram, F., Leonenko, N. & Šuvak, N. (2013) On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions. Markov Processes and Related Fields, 19 (2), 249-298.
@article{article, author = {Avram, Florin and Leonenko, Nikolai and \v{S}uvak, Nenad}, year = {2013}, pages = {249-298}, keywords = {diffusion process, infinitesimal generator, Kolmogorov – Pearson diffusion, Sturm – Liouville equation, transition density}, journal = {Markov Processes and Related Fields}, volume = {19}, number = {2}, issn = {1024-2953}, title = {On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions}, keyword = {diffusion process, infinitesimal generator, Kolmogorov – Pearson diffusion, Sturm – Liouville equation, transition density} }
@article{article, author = {Avram, Florin and Leonenko, Nikolai and \v{S}uvak, Nenad}, year = {2013}, pages = {249-298}, keywords = {diffusion process, infinitesimal generator, Kolmogorov – Pearson diffusion, Sturm – Liouville equation, transition density}, journal = {Markov Processes and Related Fields}, volume = {19}, number = {2}, issn = {1024-2953}, title = {On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions}, keyword = {diffusion process, infinitesimal generator, Kolmogorov – Pearson diffusion, Sturm – Liouville equation, transition density} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font