Pregled bibliografske jedinice broj: 641295
On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions
On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions // Markov Processes and Related Fields, 19 (2013), 2; 249-298 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 641295 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On spectral analysis of heavy-tailed Kolmogorov- Pearson diffusions
Autori
Avram, Florin ; Leonenko, Nikolai ; Šuvak, Nenad
Izvornik
Markov Processes and Related Fields (1024-2953) 19
(2013), 2;
249-298
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
diffusion process; infinitesimal generator; Kolmogorov – Pearson diffusion; Sturm – Liouville equation; transition density
Sažetak
The self-adjointness of the semigroup generator of one dimensional diffusions implies a spectral representation (see [33, 50]) which has found many useful applications, for example for the prediction of second order stationary sequences (see [18]) and in mathematical finance (see [47]). However, on noncompact state spaces the spectrum of the generator will typically include both a discrete and a continuous part, with the latter starting at a spectral cutoff point related to the nonexistence of stationary moments. The significance of this fact for statistical estimation is not yet fully understood. We consider here the problem of spectral representation of transition density for an interesting class of examples: the hypergeometric diffusions with heavytailed Pearson type invariant distribution of a) reciprocal (inverse) gamma, b) Fisher – Snedecor, or c) skew-Student type. As opposed to the “classic” hypergeometric diffusions (Ornstein – Uhlebeck, Gamma/CIR, Beta/Jacobi), these diffusions have a continuum spectrum, whose spectral cutoff and transition density we present in this paper.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus