Pregled bibliografske jedinice broj: 640375
An Expectation-Maximization Approach Applied to Underwater Target Detection
An Expectation-Maximization Approach Applied to Underwater Target Detection // Proceedings of the International Conference on Detection and Classification of Underwater Targets (DCUT), Brest, 2012. / Isabelle Quidu, Vincent Myers, Benoit Zerr (ur.).
Newcastle: Cambridge Scholars Publishing, 2014. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 640375 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
An Expectation-Maximization Approach Applied to Underwater Target Detection
Autori
Tai Fei ; Dieter Kraus ; Ivan Aleksi
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the International Conference on Detection and Classification of Underwater Targets (DCUT), Brest, 2012.
/ Isabelle Quidu, Vincent Myers, Benoit Zerr - Newcastle : Cambridge Scholars Publishing, 2014
ISBN
978-1-4438-5709-3
Skup
ICoURS’12 – International Conference on Underwater Remote Sensing
Mjesto i datum
Brest, Francuska, 08.10.2012. - 11.10.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
image segmentation; Pearson distribution system; Dempster-Shafer evidence theory; expectationmaximization algorithm; synthetic aperture sonar
Sažetak
In this paper, an expectation-maximization (EM) approach assisted by Dempster-Shafer evidence theory (DST) for image segmentation is presented. The likelihood function for EM approach proposed by Sanjay-Gopal et al., which decouples the spatial correlation between pixels far away from each other, is taken into account. The Gaussian mixture model is extended to a generalized mixture model which adopts the Pearson distribution system, so that our approach can approximate the statistics of the sonar imagery with more flexibility. Moreover, an intermediate step (I-step) based on DST is introduced between the E- and M-steps of the EM to consider the spatial dependency among neighboring pixels. Finally, numerical tests are carried out on SAS images. Our approach is quantitatively compared to those methods from the literature with the help of se veral evaluation measures for image egmentation.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
165-0361621-2000 - Distribuirano računalno upravljanje u transportu i industrijskim pogonima (Hocenski, Željko, MZO ) ( CroRIS)
165-0362980-2002 - Postupci raspoređivanja u samoodrživim raspodijeljenim računalnim sustavima (Martinović, Goran, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Profili:
Ivan Aleksi
(autor)