Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 640375

An Expectation-Maximization Approach Applied to Underwater Target Detection


Tai Fei; Dieter Kraus; Ivan Aleksi
An Expectation-Maximization Approach Applied to Underwater Target Detection // Proceedings of the International Conference on Detection and Classification of Underwater Targets (DCUT), Brest, 2012. / Isabelle Quidu, Vincent Myers, Benoit Zerr (ur.).
Newcastle: Cambridge Scholars Publishing, 2014. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 640375 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
An Expectation-Maximization Approach Applied to Underwater Target Detection

Autori
Tai Fei ; Dieter Kraus ; Ivan Aleksi

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the International Conference on Detection and Classification of Underwater Targets (DCUT), Brest, 2012. / Isabelle Quidu, Vincent Myers, Benoit Zerr - Newcastle : Cambridge Scholars Publishing, 2014

ISBN
978-1-4438-5709-3

Skup
ICoURS’12 – International Conference on Underwater Remote Sensing

Mjesto i datum
Brest, Francuska, 08.10.2012. - 11.10.2012

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
image segmentation; Pearson distribution system; Dempster-Shafer evidence theory; expectationmaximization algorithm; synthetic aperture sonar

Sažetak
In this paper, an expectation-maximization (EM) approach assisted by Dempster-Shafer evidence theory (DST) for image segmentation is presented. The likelihood function for EM approach proposed by Sanjay-Gopal et al., which decouples the spatial correlation between pixels far away from each other, is taken into account. The Gaussian mixture model is extended to a generalized mixture model which adopts the Pearson distribution system, so that our approach can approximate the statistics of the sonar imagery with more flexibility. Moreover, an intermediate step (I-step) based on DST is introduced between the E- and M-steps of the EM to consider the spatial dependency among neighboring pixels. Finally, numerical tests are carried out on SAS images. Our approach is quantitatively compared to those methods from the literature with the help of se veral evaluation measures for image egmentation.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
165-0361621-2000 - Distribuirano računalno upravljanje u transportu i industrijskim pogonima (Hocenski, Željko, MZO ) ( CroRIS)
165-0362980-2002 - Postupci raspoređivanja u samoodrživim raspodijeljenim računalnim sustavima (Martinović, Goran, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Ivan Aleksi (autor)


Citiraj ovu publikaciju:

Tai Fei; Dieter Kraus; Ivan Aleksi
An Expectation-Maximization Approach Applied to Underwater Target Detection // Proceedings of the International Conference on Detection and Classification of Underwater Targets (DCUT), Brest, 2012. / Isabelle Quidu, Vincent Myers, Benoit Zerr (ur.).
Newcastle: Cambridge Scholars Publishing, 2014. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Tai Fei, Dieter Kraus & Ivan Aleksi (2014) An Expectation-Maximization Approach Applied to Underwater Target Detection. U: Isabelle Quidu, Vincent Myers, Benoit Zerr (ur.)Proceedings of the International Conference on Detection and Classification of Underwater Targets (DCUT), Brest, 2012..
@article{article, year = {2014}, keywords = {image segmentation, Pearson distribution system, Dempster-Shafer evidence theory, expectationmaximization algorithm, synthetic aperture sonar}, isbn = {978-1-4438-5709-3}, title = {An Expectation-Maximization Approach Applied to Underwater Target Detection}, keyword = {image segmentation, Pearson distribution system, Dempster-Shafer evidence theory, expectationmaximization algorithm, synthetic aperture sonar}, publisher = {Cambridge Scholars Publishing}, publisherplace = {Brest, Francuska} }
@article{article, year = {2014}, keywords = {image segmentation, Pearson distribution system, Dempster-Shafer evidence theory, expectationmaximization algorithm, synthetic aperture sonar}, isbn = {978-1-4438-5709-3}, title = {An Expectation-Maximization Approach Applied to Underwater Target Detection}, keyword = {image segmentation, Pearson distribution system, Dempster-Shafer evidence theory, expectationmaximization algorithm, synthetic aperture sonar}, publisher = {Cambridge Scholars Publishing}, publisherplace = {Brest, Francuska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font