Pregled bibliografske jedinice broj: 639433
Comparison of stamp classification using SVM and Random ferns
Comparison of stamp classification using SVM and Random ferns // Proceedings of 18th IEEE Symposium on Computers and Communications (ISCC) 2013 / Douligeris, Christos ; Gotovac, Sven ; Vojnović, Milan ; Elmaghraby, Adel. S. (ur.).
Split: Institute of Electrical and Electronics Engineers (IEEE), 2013. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 639433 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Comparison of stamp classification using SVM and Random ferns
Autori
Petej, Pjero ; Gotovac, Sven
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of 18th IEEE Symposium on Computers and Communications (ISCC) 2013
/ Douligeris, Christos ; Gotovac, Sven ; Vojnović, Milan ; Elmaghraby, Adel. S. - Split : Institute of Electrical and Electronics Engineers (IEEE), 2013
ISBN
978-1-4673-2711-4
Skup
18th IEEE Symposium on Computers and Communications (ISCC) 2013
Mjesto i datum
Split, Hrvatska, 07.07.2013. - 10.07.2013
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
documents; classification; stamps; SVM; random; ferns; distributed; software; systems;
Sažetak
In distributed software systems and processes that use large amounts of documents there is an essential need for data mining and document classification algorithms. These algorithms are aimed at optimizing the process, making it less error prone. In this paper we deal with the problem of document classification using two machine learning algorithms. Both algorithms use stamp images in documents to classify the document itself. The idea is to classify the document stamp and then, using known information about the stamp owner, search the rest of the document for relevant data. Our results are based on actual documents used in the process of debt collection and our training and test datasets are randomly picked from an existing database with over three million documents. The mentioned machine learning classification algorithms are implemented and compared in terms of classification accurateness, robustness and speed.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Profili:
Sven Gotovac
(autor)