Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 639433

Comparison of stamp classification using SVM and Random ferns


Petej, Pjero; Gotovac, Sven
Comparison of stamp classification using SVM and Random ferns // Proceedings of 18th IEEE Symposium on Computers and Communications (ISCC) 2013 / Douligeris, Christos ; Gotovac, Sven ; Vojnović, Milan ; Elmaghraby, Adel. S. (ur.).
Split: Institute of Electrical and Electronics Engineers (IEEE), 2013. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 639433 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Comparison of stamp classification using SVM and Random ferns

Autori
Petej, Pjero ; Gotovac, Sven

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of 18th IEEE Symposium on Computers and Communications (ISCC) 2013 / Douligeris, Christos ; Gotovac, Sven ; Vojnović, Milan ; Elmaghraby, Adel. S. - Split : Institute of Electrical and Electronics Engineers (IEEE), 2013

ISBN
978-1-4673-2711-4

Skup
18th IEEE Symposium on Computers and Communications (ISCC) 2013

Mjesto i datum
Split, Hrvatska, 07.07.2013. - 10.07.2013

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
documents; classification; stamps; SVM; random; ferns; distributed; software; systems;

Sažetak
In distributed software systems and processes that use large amounts of documents there is an essential need for data mining and document classification algorithms. These algorithms are aimed at optimizing the process, making it less error prone. In this paper we deal with the problem of document classification using two machine learning algorithms. Both algorithms use stamp images in documents to classify the document itself. The idea is to classify the document stamp and then, using known information about the stamp owner, search the rest of the document for relevant data. Our results are based on actual documents used in the process of debt collection and our training and test datasets are randomly picked from an existing database with over three million documents. The mentioned machine learning classification algorithms are implemented and compared in terms of classification accurateness, robustness and speed.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Sven Gotovac (autor)


Citiraj ovu publikaciju:

Petej, Pjero; Gotovac, Sven
Comparison of stamp classification using SVM and Random ferns // Proceedings of 18th IEEE Symposium on Computers and Communications (ISCC) 2013 / Douligeris, Christos ; Gotovac, Sven ; Vojnović, Milan ; Elmaghraby, Adel. S. (ur.).
Split: Institute of Electrical and Electronics Engineers (IEEE), 2013. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Petej, P. & Gotovac, S. (2013) Comparison of stamp classification using SVM and Random ferns. U: Douligeris, C., Gotovac, S., Vojnović, M. & Elmaghraby, A. (ur.)Proceedings of 18th IEEE Symposium on Computers and Communications (ISCC) 2013.
@article{article, author = {Petej, Pjero and Gotovac, Sven}, year = {2013}, keywords = {documents, classification, stamps, SVM, random, ferns, distributed, software, systems, }, isbn = {978-1-4673-2711-4}, title = {Comparison of stamp classification using SVM and Random ferns}, keyword = {documents, classification, stamps, SVM, random, ferns, distributed, software, systems, }, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Split, Hrvatska} }
@article{article, author = {Petej, Pjero and Gotovac, Sven}, year = {2013}, keywords = {documents, classification, stamps, SVM, random, ferns, distributed, software, systems, }, isbn = {978-1-4673-2711-4}, title = {Comparison of stamp classification using SVM and Random ferns}, keyword = {documents, classification, stamps, SVM, random, ferns, distributed, software, systems, }, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Split, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font