Pregled bibliografske jedinice broj: 639375
A Strategy for Short-Term Load Forecasting by Support Vector Regression Machines
A Strategy for Short-Term Load Forecasting by Support Vector Regression Machines // IEEE transactions on power systems, 28 (2013), 4; 4356-4364 doi:10.1109/TPWRS.2013.2269803 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 639375 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Strategy for Short-Term Load Forecasting by Support Vector Regression Machines
Autori
Čeperić, Ervin ; Čeperić, Vladimir ; Barić, Adrijan
Izvornik
IEEE transactions on power systems (0885-8950) 28
(2013), 4;
4356-4364
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
short-term load forecasting; support vector machines
Sažetak
This paper presents a generic strategy for short-term load forecasting (STLF) based on the support vector regression machines (SVR). Two important improvements to the SVR based load forecasting method are introduced, i.e., procedure for generation of model inputs and subsequent model input selection using feature selection algorithms. One of the objectives of the proposed strategy is to reduce the operator interaction in the model-building procedure. The proposed use of feature selection algorithms for automatic model input selection and the use of the particle swarm global optimization based technique for the optimization of SVR hyper-parameters reduces the operator interaction. To confirm the effectiveness of the proposed modeling strategy, the model has been trained and tested on two publicly available and well-known load forecasting data sets and compared to the state-of-the-art STLF algorithms yielding improved accuracy.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
036-0361621-1622 - Kvaliteta signala u integriranim sklopovima s mješovitim signalom (Barić, Adrijan, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus