Pregled bibliografske jedinice broj: 639186
Stream water temperature prediction based on Gaussian process regression
Stream water temperature prediction based on Gaussian process regression // Expert systems with applications, 40 (2013), 18; 7407-7414 doi:10.1016/j.eswa.2013.06.077 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 639186 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Stream water temperature prediction based on Gaussian process regression
Autori
Grbić, Ratko ; Kurtagić, Dino ; Slišković, Dražen
Izvornik
Expert systems with applications (0957-4174) 40
(2013), 18;
7407-7414
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
stream water temperature; prediction; Gaussian process regression; variable selection; mutual information
Sažetak
The prediction of stream water temperature presents an interesting topic since the water temperature has a significant ecological and economical role, such as in species distribution, fishery, industry and agriculture water exploitation. The prediction of stream water temperature is usually based on appropriate mathematical model and measurements of different atmospheric factors. In this paper, a probabilistic approach to daily mean water temperature prediction is proposed. The resulting model is a combination of two Gaussian process regression models where the first model describes the long-term component of water temperature and the other model describes the short-term variations in water temperature. The proposed approach is developed even further by modeling the short-term variations with multiple Gaussian process regression models instead with a single one. Apart from that, variable selection procedure based on mutual information is presented which is suitable for input variable selection when nonlinear models for stream water prediction are developed. The proposed approach is compared with traditional modeling approaches on the measurements obtained on the Drava river in Croatia. The presented methodology can be used as a basis of the predictive tools for water resource managers.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Temeljne tehničke znanosti, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
165-0361621-2000 - Distribuirano računalno upravljanje u transportu i industrijskim pogonima (Hocenski, Željko, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus