Pregled bibliografske jedinice broj: 637706
Hinging Hyperplanes for Time-Series Segmentation
Hinging Hyperplanes for Time-Series Segmentation // IEEE Transactions on Neural Networks and Learning Systems, 24 (2013), 8; 1279-1291 doi:10.1109/TNNLS.2013.2254720 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 637706 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Hinging Hyperplanes for Time-Series Segmentation
Autori
Huang, Xiaolin ; Matijaš, Marin ; Suykens, Johan A.K.
Izvornik
IEEE Transactions on Neural Networks and Learning Systems (2162-237X) 24
(2013), 8;
1279-1291
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Hinging hyperplanes; lasso; least squares support vector machine; segmentation; time series
Sažetak
Division of a time series into segments is a common technique for time-series processing, and is known as segmentation. Segmentation is traditionally done by linear interpolation in order to guarantee the continuity of the reconstructed time series. The interpolation-based segmentation methods may perform poorly for data with a level of noise because interpolation is noise sensitive. To handle the problem, this paper establishes an explicit expression for segmentation from a compact representation for piecewise linear functions using hinging hyperplanes. This expression enables the use of regression to obtain a continuous reconstructed signal and, as a consequence, application of advanced techniques in segmentation. In this paper, a least squares support vector machine with lasso using a hinging feature map is given and analyzed, based on which a segmentation algorithm and its online version are established. Numerical experiments conducted on synthetic and real-world datasets demonstrate the advantages of our methods compared to existing segmentation algorithms.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Elektrotehnika, Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Marin Matijaš
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE
Uključenost u ostale bibliografske baze podataka::
- IEEE Xplore, Scopus