Pregled bibliografske jedinice broj: 6370
Moving total least squares for parameter identification in mathematical model
Moving total least squares for parameter identification in mathematical model // Operations Research Proceedings / Kleinschmidt, P. ; Bachem, A. ; Leopold-Wildburger, U. et al. (ur.).
Berlin: Springer, 1996. str. 196-201 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 6370 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Moving total least squares for parameter identification in mathematical model
Autori
Scitovski, Rudolf ; Ungar, Šime ; Jukić, Dragan ; Crnjac, Miljenko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Operations Research Proceedings
/ Kleinschmidt, P. ; Bachem, A. ; Leopold-Wildburger, U. et al. - Berlin : Springer, 1996, 196-201
Skup
Symposium on Operations Research
Mjesto i datum
Passau, Njemačka, 13.09.1995. - 15.09.1995
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
surface generating; moving least squares; smoothing
Sažetak
We consider a parameter identification problem in a mathematical model which is described by a system of differential equations, Usually it is not possible to expres s the solution of such a system by means of elementary functions, but nevertheless, one has to estimate the optimal parameter values using the experimental data. In our paper we apply the smooth-the-data method. In order to obtain smooth function we are using the moving total least squares method (TLS). The local approximants are linear functions obtained by applying the TLS method usin appropriate weight functions. This means that for each local approximant one has to find the smallest singular value for a second order matrix. The reason for using the TLS is the fact that the reeors may be expected in experimental measurements of both the independent and the dependent variables in the model. Once the optimal parameters are estimated, the ooptimal initial conditions are going to be estimated using the quasilinearisation method. The method is going to be tested on the mathematical model of insulin sensitivity.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek