Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 627331

Improved Bisector Clustering of Uncertain Data Using SDSA Method on Parallel Processors


Lukić, Ivica; Slavek, Ninoslav; Köhler, Mirko
Improved Bisector Clustering of Uncertain Data Using SDSA Method on Parallel Processors // Tehnički Vjesnik-Technical Gazette, 20 (2013), 2; 255-261 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 627331 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Improved Bisector Clustering of Uncertain Data Using SDSA Method on Parallel Processors

Autori
Lukić, Ivica ; Slavek, Ninoslav ; Köhler, Mirko

Izvornik
Tehnički Vjesnik-Technical Gazette (1330-3651) 20 (2013), 2; 255-261

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Clustering; data mining; expected distance; parallel processing; uncertain data

Sažetak
Clustering uncertain objects is a well researched field. This paper is concerned with clustering uncertain objects with 2D location uncertainty due to object movements. Location of moving object is reported periodically, thus location is uncertain and described with probability density function (PDF). Data about moving objects and their locations are placed in distributed databases. Number of uncertain objects can be very large and obtaining quality result within reasonable time is a challenging task. Basic clustering method is UK- means, in which all expected distances (ED) from objects to clusters are calculated. Thus UK-means is inefficient. To avoid ED calculations various pruning methods are proposed. A survey of existing clustering methods is given in this paper and a combination of two methods is proposed. The first method, called Segmentation of Data Set Area is combined with Improved Bisector pruning to improve execution time of clustering uncertain data. In SDSA method, data set area is divided in many small segments, and only objects in that small segment are observed. Using segments there is a possibility for parallel computing, because segments are mutually independent, thus each segment can be computed on different core of parallel processor. Experiments were conducted to evaluate the effectiveness of the combined methods.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Mirko Köhler (autor)

Avatar Url Ivica Lukić (autor)

Avatar Url Ninoslav Slavek (autor)


Citiraj ovu publikaciju:

Lukić, Ivica; Slavek, Ninoslav; Köhler, Mirko
Improved Bisector Clustering of Uncertain Data Using SDSA Method on Parallel Processors // Tehnički Vjesnik-Technical Gazette, 20 (2013), 2; 255-261 (međunarodna recenzija, članak, znanstveni)
Lukić, I., Slavek, N. & Köhler, M. (2013) Improved Bisector Clustering of Uncertain Data Using SDSA Method on Parallel Processors. Tehnički Vjesnik-Technical Gazette, 20 (2), 255-261.
@article{article, author = {Luki\'{c}, Ivica and Slavek, Ninoslav and K\"{o}hler, Mirko}, year = {2013}, pages = {255-261}, keywords = {Clustering, data mining, expected distance, parallel processing, uncertain data}, journal = {Tehni\v{c}ki Vjesnik-Technical Gazette}, volume = {20}, number = {2}, issn = {1330-3651}, title = {Improved Bisector Clustering of Uncertain Data Using SDSA Method on Parallel Processors}, keyword = {Clustering, data mining, expected distance, parallel processing, uncertain data} }
@article{article, author = {Luki\'{c}, Ivica and Slavek, Ninoslav and K\"{o}hler, Mirko}, year = {2013}, pages = {255-261}, keywords = {Clustering, data mining, expected distance, parallel processing, uncertain data}, journal = {Tehni\v{c}ki Vjesnik-Technical Gazette}, volume = {20}, number = {2}, issn = {1330-3651}, title = {Improved Bisector Clustering of Uncertain Data Using SDSA Method on Parallel Processors}, keyword = {Clustering, data mining, expected distance, parallel processing, uncertain data} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Social Services Abstracts





Contrast
Increase Font
Decrease Font
Dyslexic Font