ࡱ> {bjbjzz.e!!!!!5555<q|5x-;+=+=+=+=+=+=+$$/1a+!B@a+!!2-%%% !!;+%;+%%:W*,*x4f#* '+H-0x-*R2 %:2**2!*4%a+a+Z%:x-2% :Goran Lapat, M.A. Faculty of Teacher Education of the University of Zagreb goran.lapat@ufzg.hr Lidija Eret, elementary school grade and mathematics teacher Eugena Kvaternik Elementary School in Velika Gorica lidija.eret@gmail.com APPLICATION OF THE ELEMENTS OF VEDIC MATHEMATICS IN CLASSES WITH ROMA PUPILS Summary Work with Roma children raises special challenges for educators and teachers who during their pre-service training have not been prepared for the specific work within the culture of the Roma community and the Roma language and in particular for the flexibility in work with Roma pupils. Interest of Roma pupils in educational process is a challenge to which we have tried to respond by introducing elements of Vedic mathematics in tuition. This article provides a methodological proposal which shows a connection of an active approach of Roma students' mathematical learning with the introduction of the Vedic way of calculating in additional mathematics classes and extracurricular activities. Key words Vedic mathematics, Roma, additional mathematics classes, extracurricular activities Introduction Primary school teachers with many years of experience with Roma pupils are daily facing challenges and difficulties in the realisation of curriculum. It takes more time for processing of maths lessons, and mastering of those lessons is a necessary precondition for continuing with the curriculum. Maths has to be practised and exercised continuously. Roma pupils come from deprived and disincentive surroundings, and whether we like it or not, this has a great influence on the adoption of the curriculum. Pupils do not work at home; do not write their homework or exercise. Students do not work at home, not doing homework, not training. Multiplication table is an example of basic knowledge of mathematics and very often pupils in higher grades have not acquired it. Vedic mathematics offers a different model of multiplication where it is enough to know the multiplication table up to 5 * 5. Roma in Meimurje The Roma community in Croatia is included in census as a nation since 1971. It consists of different ethnic groups. In northern Croatia, in Meimurje, prevails the group which speaks Ljimba d bjash. This is an old Romanian dialect which was adopted by Roma during their stay on the territory of today's Romania. (Novak Mili, 2007; Oluji and Radosavljevi, 2007). They have migrated to Croatia during the last decades of 19th century. In 2011, there were Roma, and 5232 of them claim that their native langauge is Roma, and 77 claim their native language is Romanian. According to data, we can conclude that there are 5 321 Roma in Meimurje ( HYPERLINK "http://www.dzs.hr" www.dzs.hr). Table 1. Number of Roma population 1971. - 2011. Year1971.1981.1991.2001.2011.Meimurje1531139192028875107Croatia125738586695946316975 In the last years, there are many papers, researches, reports and programs about Roma, their position and life conditions in Croatia, whose aim is to draw attention to discrimination and xenophobia against the Roma national minority which already lives on the alarming margin of society. The most important researches are ''Social position of Roma in SR Croatia'' which was conducted by the Institute for Social Research in Zagreb in 1982, "Social and developmental status of Roma in Croatia," which was conducted by the Institute of Social Sciences Ivo Pilar in 1998, "Structure of Roma families and understanding of parenthood in them" conducted by the National Research Institute for Family, Maternity and Youth in 2002. The "Report on Roma approach to employment", 2004 by L. Kuan, I. Zoon, and magazines Rural sociology 87/90, 1985 entitled ''Studies of the social situation of the Roma" and Social Studies 2-3 (46-47), 2000, entitled "The social status of Roma in Croatia." Roma aspiration to preserve their identity and to be different is a basic human right. The problem is how to maintain traditional culture and identity in a time of global and rapid modernization. There is the connstant question of whether to maintain the traditional differences which contribute to their unequal treatment or to accept the need for change and modernization, which can help them to gain equality, but also to change their identity. Although the desire of Beash Roma to live together with the majority population in Croatia, the most of Roma are spatially dispersed, unconnected with the "typical" type of settlement. They live cities, where they usually inhabit the suburbs, along the edge of the road, on the forest boundaries, on the edge of the village, but they also live in villages, usually in separate "Gypsy settlements" without built infrastructure (sewer, water, garbage collection, roads, etc). Their social space can be interpreted on three sociological concepts: exclusion, marginality and subclasses (Fassin, 1996). Today they are spatially stable and live in permanent caravan locations. So Roma are spatially, economically and politically marginalized (`uur, 2000). Roma education Most of Roma political and cultural elite is aware that education is the key to modernization. However, education, especially today, requires tangible assets and liabilities. Many Roma communities are lacking both. Since hard living and housing conditions mainly dominate, and Roma do not have the habit of schooling, and have a high percentage of illiteracy among parents, many look with contempt at investments which education requires. Therefore Roma resist to their children's education. Low level of education has implications for the general quality of life and life conditions. Starting from the reality that today's schools have become meeting places of different cultures, religions, languages and points of view, the development of teachers' attitude towards culturally different students based on intercultural competence becomes crucial when dealing with Roma students. Student is the subject of the process of education, a teacher's partner in the common work, and the most important reason for the existence of the entire school system and the education system (Mijatovic, 2002). Pupil, teacher and parents are responsible for the success of pupils. Roma pupils and parents are mostly illiterate and uneducated people who think that it is enough to send their children to school and that here end their concerns related to education. Attitudes of students towards school obligations are very different. There are students who come to school with clean books, who carry school slippers and accessories, as well as those which only see the as a dry and warm place to stay. Continuous monitoring of the development of pedagogical science becomes fundamental premise of improving the quality and effectiveness of education, professional development of teachers and necessary step towards a society of knowledge (Hrvati and Piral, 2007). In explaining the cognitive development of children it is usually mentioned Piaget's theory. He explains that the inheritance determines the sequence of developmental stages, but that environment gives specific content (Piaget, 1977). This means that environmental influences determine the duration and effectiveness of content and activities. The child's environment at the age of early childhood present parents, siblings and relatives and neighbors. A child learns by experience, often by method of trial and error and imitation. Thus, children will imitate people around them, using all their merits and vocabulary. The earliest and easiest to adopt are the terms that have to do with children's everyday experiences, such as the ideas of things, shapes, relationships between people and objects. Thus, to understand the cognitive development of children in the ages of early development we must be thoroughly familiar with everyday environment in which the child lives. Particular attention should be paid to the development of concepts about life, the concept of space and time, then the social concepts (relations among family members, and relatives and neighbours). School reform is a social and educational process. It, one hand, radically changes education policy and position, the position of students and teachers in the education and organization of the education system and its contents. On the other hand, educational reform requires a new organization of the school, the application of modern and proven methods, the application of new teaching technologies ... The school, then, through its activities focuses the attention to flaws and weaknesses in the work, especially when it comes to students with disabilities. In the past, therefore, came to doubling and paralysis of inclusive education (Lapat, Milenovi, 2010). Society sets up the task of conducting the inclusive education, to ensure systematic knowledge adopted through active learning of each student in relation to his abilities. Theoretical construct known as "lifelong learning" includes learning from birth to death (more in: Pastuovi, 1999). This is actually a system of various forms of formal, non-formal and informal learning of young people and adults. Experts will agree that in this lifelong process the most important thing is learning at the very beginning of life, so learning from birth to school age and learning in elementary school. Experts are always asking questions about the factors that affect the learning of the young human being as well as the ability to influence and control this complex process. The answers to these questions as a starting point for the announced scientific evaluation should be sought in the oeuvre of knowledge and understanding of developmental psychology and preschool pedagogy and education science (eg Babic, 1991, Babic, 1993; Miljak, 1995; Miljak, 1998; Pastuovi, 1999). In Europe we countries in which compulsory education begins from the age of four (Netherlands) or five (England) and countries in which the primary obligation of compulsory school attendance begins with seven years of age (eg Finland). To the question "when the child is ready for elementary school", famous psychologist John Furlan (1983) answered with the text titled "Does Muhammad come to the mountain or the mountain comes to Muhammad ?". He actually asked the opposite question: "Does the child need to be 'mature' for the school or schools should accept all children of a certain age the way they are and provide them with optimal conditions for progress and development." In educational circles, the prevailing opinion is that we should create a model of compulsory primary school where all children of a certain age can succeed ("pedagogy of success for all") and can make progress optimally (Baert et al. 1989). Certain improvements in the education of Roma in Croatia, however, do exist. This is partly a consequence of existing measures undertaken with the aim of better integratation of the Roma into Croatian society. Education is certainly one of the most important components of the integration of the Roma minority, and as such has an important place in the National Programme for the Roma and the Action Plan for the Decade of Roma Inclusion (Croatian Government, 2003, 2008). The approach to teaching mathematics given the uniqueness of the Romany culture When the education of the Romany children is concerned, the specific qualities of such a relationship must be taken into consideration, and that applies to teaching mathematics in the classroom as well. A Romany child approaches the educational process not only by bringing to it his or her individuality and competence, but also as a member of a culture and a language that is, in a way, different from the culture from which most of the children in our schools approach the teaching process. For this reason, the approach to teaching, including teaching mathematics, poses a challenge not only for the Romany student, but for the teachers who are not familiar with the specific characteristics of the Romany culture. That is why it is necessary, when working with the Romany students, to find a methodological approach to teaching mathematics in which a teacher will try to adjust the learning process on some new level, with the aim of better and easier acquisition of mathematical contents. Naturally, the primary focus is on the student's individual skills, competences and aspirations (Eret, 2012, 156), and furthermore, a student has to be perceived as an individual in a particular, and in this case, specific, social and cultural context (Eret 2012, 157). School, and thus teaching as well, is only a small part of the educational environment; the child as an individual in a society, is influenced by its broader and narrower environment, best described by Bronfenbrenner's model of developmental theory of ecological systems (Figure 1). As we can see, in the closest circle of social influence on upbringing (and education), in the microsystem, are factors of the child's immediate environment, some of which are family and school, while all the way up to the macrosystem there are attitudes and ideologies of the culture in which the child is growing up, and they are shaping him into a social individual, in a way that which each of these influences has the same significance (Eret, 2012, 145).  Figure 1: Bronfenbrenner's ecological model of the environment (source: Vasta et al., 2005, 61) Vedic mathematics as an alternative answer to a specific methodological problem As noted in previous chapters, one of the difficulties that the Romany children encounter in their education is the acquisition of mathematical contents in a way that is prescribed by the mathematics curriculum for primary school children. In an attempt to find a better approach to learning mathematics, as an alternative option it is possible to apply calculation by using Vedic mathematics. Vedic mathematics is a calculation system based on 16 sutras (Sanskrit formulas) the basic feature of which is a simplicity of calculation without the written computation, which can stimulate the students' interest in mathematical thinking and creativity in finding solutions to mathematical problems (Milolo~a, 2008, 19) . In contemporary researches, scientists are trying to find alternative usages and importance of Vedic mathematics apart from its computational aspect. In that process, they are discovering a correlation with various aspects of a daily life, with other sciences, as well as the perspective of observing through the significance of sutras for everyday work and activities; their philosophy and meaning are applicable not only in the mathematical sense, but also to the events and order of social achievements, moral development, interest in individual and social progress (Kandasamy and Smarandache, 2006, 36-39). The 16 sutras, through formulas which are expressed in words and are easily understandable, memorable, and applicable, represent ways of solving mathematical problems in the areas of arithmetic, algebra, geometry and calculus (Milolo~a, 2008, 19). Sutras which are the focus of this work are related to mathematical contents and ways of calculation that could be applied in extracurricular work with the Romany students, particularly in remedial mathematics classes. Precisely because of all the above mentioned characteristics, sutras might be a useful alternative or a supplement to a traditional method of teaching, in cases where such a method of teaching does not achieve the expected results or educational progress. The following chapter proposes the examples of the application of the sutras, that is, Vedic mathematics, in primary school remedial classes with the Romany students. The application of Vedic mathematics in remedial primary school mathematics classes The Romany students often experience problems in mastering basic calculations operations and tasks, encountering the problem of insufficient acquisition of the mathematical basics in the prior knowledge necessary for advancement in mathematical work. That is why it is necessary to find an approach to teaching by applying an alternative work method, which would provide the Romany students with a problem solving method that is simpler and faster than the traditional method used in most of our schools. Two sutras, All from 9 and the Last from 10, and By One More than the One Before, whose examples have thoroughly discussed Croatian authors as well (Milolo~a, 2008), will serve as a model for methodological examples of the 5th grade primary school remedial classes. The use of Vedic mathematics in these cases is interesting because of the prior knowledge required for the acquisition of the 5th grade content (Set of Natural Numbers), and for mastering basic mathematical operations in general; in the examples which will be outlined, in the Vedic methods of multiplication, it is sufficient to know the basic mathematical operations of addition and subtraction, and 5 x 5 multiplication table. The main point is, that students can perform calculations by heart and quickly, without the written computation (Kandasamy and Smarandache, 2006; Milolo~a, 2008). Before the calculation, it is necessary to learn and acquire several concepts of Vedic mathematics. By ten in Vedic mathematics we mean decimal units, that is, powers of number 10: 10, 100, 1000, 10 000... which is closest to a given number; we call them also bases. Likewise, the notion of a number deviation, or to what extent a given number (in a positive or negative sense) deviates from the nearest ten (Figure 2), so deviation is either positive or negative, and has a corresponding sign (Kandasamy and Smarandache, 2006; Milolo~a, 2008). In the process of multiplication also occurs a Viculum number (Belavic, internet source 1) when the digits of a number are 'composed' of positive but also negative numbers obtained by the method. In order to "make" a negative number a digit, it must become positive, so this number is replaced by its complement (deviation), e.g. number -9 by 1, -2 by 8, and from the previous number we subtract 1 (see example 2). NUMBERBASEDEVIATION810-21710773100-278991000-10111231000123 Figure 2: Examples of positive and negative number deviation Examples for practice: Vedic mathematics in the 5th grade primary school remedial classes The following examples will show how the 5th grade primary school Romany students can master the procedures of multiplication without written calculations, by using the principles of Vedic mathematics. Here we have several examples which can serve as the framework for remedial classes in the acquisition of content and mathematical operations of the Set of natural Numbers unit. Example 1. Multiply numbers 6 and 9. Procedure. (1) The base of both numbers is 10. We calculate deviations of the numbers: deviation of 6 is -4, deviation of 9 is -1. (2) To one of the numbers we add a deviation of another: 6 + (-1) or 9 + (-4); in both cases the result is 5. (3) We multiply deviations, -4 " (-1) = 4. (4) The solution, respectively, is 5 and 4, 54 (Figure 3). 6 9-4 -19 + (-4) = 5 or 6 + (-1) = 5-4 " (-1) = 4 Figure 3. Multiplying numbers 6 and 9. Example 2. Multiplying numbers 103 and 87. We approach multiplication as in the above example. However, one of the numbers is higher and another is lower than the base. The procedure is slightly different. It is an example of complementing the rule with the theory presented in sutras. Procedure. (1) The base of both numbers is 100. Deviations are, respectively, 3 and -13. (2) To each factor we add a deviation of one another. 103 + (-13) or 87 + 3, in both cases we get 90. (3) We multiply deviations. 3 " (-13) = -39. As we cannot take a negative number for digits (which in this case would be written  EMBED Equation.3 ), we use the above rule for this Viculum number : the complement of number -39 is 100 - 39 = 61. We subtract 1 from the number of the previous solution (90 -1 = 89). (4) The final solution, instead of  EMBED Equation.3 , is 8961. Example 3. Multiplication by number 9. Multiply numbers 17 and 9. We have stated in previous chapters that Vedic mathematics primarily serves as algorithmic thinking in which the student does not have to memorize the multiplication table over 5x5, and the rest of the procedure can be learned by heart. In that way, multiplication by number 9, particularly in the multiplication table 10 x 10, but also in the case of multi-digit numbers, becomes mathematically logical sequence, not a set of learned information. The example of the 'multiplication table' is shown in Example 1 on the previous page, while multiplication by double-digit numbers is shown here. Procedure. (1) To the digit of the ten we add 1 (1 + 1 = 2) and we subtract the result from the factor (17 - 2 = 15). 15 is the first part of the solution. (2) We append the complement of the unit's digit of the same factor (3A  X Y f $.0np:<P /,9ҺҫҫҺnҺ_h?h8mH nHsH tH h?h8CJmH nH sH tH h?h85\mH sH !jh?h80JUmH sH h?h80JmH sH jh?h8UmH sH h?h8]mH sH h?h86mH sH h?h8mH sH h?h85mH sH h?h5mH sH h?hmH sH "L`a7 8 A B  X f $$dh`a$gd8 $dha$gd8 $dha$gd dhgd ".:<PXblv $$Ifa$gd8Ff$dh$Ifa$gd8Ffs$dh$Ifa$gd8dh$Ifgd8 $dha$gd8;= N#O#&4*/28$dh`a$gd8$dh`a$gd8$dh`a$gd8gd8 $dha$gd8Ff$dh$Ifa$gd8,9.9>>\\\^^``a aBaaaaabcc"c$c=cfdhddd6e:eTeôææÚÎÎÎÎÚÎÎh?h7P6mH sH h?h7PH*mH sH h?h7P6]mH sH j h?h7PUmH sH h?h7PmH sH h?h7P5mH sH h?h8mH sH h?h8mH nHsH tHh?mH nHsH tH08>>e$$IfTlF% t06    44 layt7PTaaaBaac>ccm`S```` $dha$gd7P $dha$gd7Pkde$$IfTlF% t06    44 layt7PTclddTeZe^efeleneePkdHf$$IfTl0  t0644 layt7PT$$Ifa$gd7P$dh$Ifa$gd7P$dh`a$gd7P TeVe^e`eneeeeeeeeeeeeee ff6fgg:h@hhhiiiiii2j4j_j`jsjtjӼӭǭǡ|k|!jFgh?h7PEHUmH sH +joT h?h7PCJUVaJmH sH jh?h7PUmH sH h?h7P6mH sH h?h7PB*mH phsH h?h`mH sH h?h7P5mH sH h?h7PB*mH phsH h?h7PmH sH $jh?h7PUmHnHsH u&eeeeee f f7ffobUUbb $dha$gd7P $dha$gd7Pkdf$$IfTl0  t0644 layt7PT$dh$Ifa$gd7P ff*ggghnij7jjjmm (3Ó $ & Fa$gdJY$dh`a$gd7P$dh`a$gd7P $dha$gd7Ptjujvj|jjjjjjjjmmmm#&(3$h.02ĚƚʚԼԼȺԮȧxb+jh?hJY0J6>*B*U\phh?hJY0J6jh?hJYUh?hJY6]h?hJY5h?hJY6 h?hJYh?h85mH sH Uh?h7P6mH sH h?h7P5mH sH h?h7PmH sH jh?h7PUmH sH !j\ih?h7PEHUmH sH & for 7). (3) The solution is 153. Conclusion Methodological examples described serve to enrich and complement the traditional practice of methodology of teaching mathematics in primary schools. Primarily, the examples described are applicable to schools with students of the Romany population, referring to the problem of the acquisition of basic mathematical operations, in this case, multiplication. Of course, Vedic mathematics offers far more examples applicable in practice and in the problem area of methodology of mathematics in working with the Romany students than it is specified in this paper; the sutras theory, as described in the previous chapters, expands through a wide range of the mathematical area. Therefore, the next scientific deliberations might tackle Vedic calculations and mathematical problems of another type, the applicability in other methodological situations, to a different age of (the Romany) students or education level. Certainly, the purpose of the methodological proposals is to investigate the efficiency of application of the alternative (Vedic) calculations according to the positive developments in the mathematical success of the Romany students. Thus, this paper points to the applicability of the alternative way of thinking and calculating to the traditional system of school education, while on the other hand, we would like to use it as an initiative for further discussion of the same (or similar) issues, and as a model for further scientific deliberations. References: Babi, N. (1991), Kvalitativna paradigma evaluacije predakolskog odgoja. Napredak, Vol. 132, br. 2, str. 188-197. Babi, N. i dr. (1993), Komunikacija i razvoj predakolskog djeteta. Napredak, Vol. 134, br. 2, str. 163-171. Baert, G. i dr. (1989), Inovacije u osnovnom obrazovanju. Zagreb: NIRO `kolske novine, str. 104. Belavi, D. (2006), Vedska matematika, trikovi za lakae ra unanje. Zbornik radova 8. susreta nastavnika matematike, Zagreb, 35-46. Eret, L. (2012),  HYPERLINK "http://bib.irb.hr/prikazi-rad?&rad=610072" \t "_blank" Odgoj i manipulacija: razmatranje kroz razvojnu teoriju ekoloakih sustava. Metodi ki ogledi. 19, 1, 143-161. Fassin, D. (1996), Exclusion, Underclass, Marginalided, Revue francaise de sociologie, No. 37, str. 37-75. Furlan, I. (1983), Da li brijeg Muhamedu ili Muhamed brijegu?; }ivot i akola: God. 33 (1984), br. 2, str. 145-154. Hrvati, N. i Piral, E. (2007), Kurikulum pedagoake izobrazbe u itelja U:Previai, V. (ur.) kurikulum: teorije-metodologija-sadr~aj-struktura, Zavod za pedagogiju Filozofskog fakulteta Sveu iliata u Zagrebu, `kolska knjiga, Zagreb, str. 333-345. Kandasamy, W. B. V.; Smarandache, F. (2006). Vedic mathematics-'Vedic' or 'mathematics': a fuzzy & neutrosophic analysis. Los Angeles: Automaton. Lapat, G. i Milenvi }. (2010), Uporedna analiza profesionalnog usavraavanja nastavnika osnovne akole za inkluzivni rad sa romskom decom u Hrvatskoj i Srbiji, U~ice, U iteljski fakultet Sveu iliata u Kragujevcu Mijatovi, A. (2002), Obrazovna revolucija i promjene hrvatskog akolstva, Hrvatski zemljopis, Zagreb Miljak, A. (1995), Mjesto i uloga roditelja u (suvremenoj) humanisti koj koncepciji predakolskog odgoja. Druatvena istra~ivanja, Vol. 4, br. 4/5, str. 601-612. Miljak, A. (1998), ʜܟNRt||8d1$H$`gdJY$ & F^`a$gdJY & FgdJY & Fd1$H$gdJY & F^`gdJY $ & Fa$gdJYʚ4z N^ʜڟtfª|~lnϾ𶪟Ͼsh?hJY0JB*phjh?hJYUUh?hJY5h?hJY6\h?hJYnHtHh?hJY6nHtHh?hJY6 h?hJY6B*mH phsH h?hJYB*mH phsH h?hJY5\h?hJY\ h?hJYh?hJY],Konstruktivisti ka paradigma u odgoju i obrazovanju. Napredak, vol. 139, br. 3, str. 282-289. Milolo~a, M. (2008), Vedska matematika. Osje ki matemati ki list. 8, 19-28 Novak - Mili, J. (2007), Hrvatski i romski u prvim godinama akolovanja. (U: Drugi jezik hrvatski (ur. Cviki, L.), Zagreb: Profil, str. 92-97). Oluji, I. i Radosavljevi, P. (2007), Jezik Roma Bajaaa. (U: Drugi jezik hrvatski (ur. Cviki, L.), Zagreb: Profil, str. 102-110). Pastuovi, N. (1999), Edukologija: integrativna znanost o sustavu cjelo~ivotnog odgoja i obrazovanja. Zagreb: Znamen, str. 600.  HYPERLINK "http://catalog.loc.gov/cgi-bin/Pwebrecon.cgi?SC=Author&SEQ=20031122031917&PID=5447&SA=Piaget,+Jean,+1896-" Piaget, J. (1977), The origins of intelligence in children; Harmondsworth, Penguin Books, str. 464. `uur, Z. (2000), Romi kao marginalna grupa, Druatvena istra~ivanja, Vol. 9, Zagreb, str. 211-228. Vasta, R.; Haith, M. M. I Miller, S. A. (2005), Dje ja psihologija: moderna znanost, Jastrebarsko: Naklada Slap. WEB izvori: Dr~avni zavod za statistiku,  HYPERLINK "http://www.dzs.hr" www.dzs.hr  HYPERLINK "http://www.dzs.hr/Hrv/censuses/census2011/results/htm/H01_01_04/h01_01_04_RH.html" http://www.dzs.hr/Hrv/censuses/census2011/results/htm/H01_01_04/h01_01_04_RH.html (21.12.2012.) Vlada RH,  HYPERLINK "http://www.vlada.hr" www.vlada.hr,  HYPERLINK "http://www.vlada.hr/hr/uredi/ured_za_nacionalne_manjine/nacionalni_program_za_rome" http://www.vlada.hr/hr/uredi/ured_za_nacionalne_manjine/nacionalni_program_za_rome (14.10.2012.) $.8\^ޯ46tvPR(*lnᾭͣͣuul_uul_uul_ujh?hJY0JUh?hJY0Jjh?hJYU#h?hJY56B*mH phsH  h?hJY5B*mH phsH h?hJY6] h?hJY6B*mH phsH h?hJYB*mH phsH  h?hJYh?hJY6B*phh?hJYB*ph%jh?hJY0J>*B*Uph% $dha$gd7P$a$gdJY $ & Fa$gdJYPRh?h7PmH sH jh?hJY0JUh?hJY0Jjh?hJYU h?hJY,1h. A!"#$% q$$If!vh#v#vR#v:V l  t<06,55R5/ / /  / / ap<ytJYT kd$$IfTlֈ- & tR  t<0644 lap<ytJYTc$$If!vh#v#vR#v:V l  t<06,55R5/  / /  / ap<ytJYT kd$$IfTlֈ- & tR  t<0644 lap<ytJYTc$$If!vh#v#vR#v:V l  t<06,55R5/ / /  / ap<ytJYT kd$$IfTlֈ- & tR  t<0644 lap<ytJYTXDd'E\  C 8A bronf_eng_skicabW0~Q_gi!qW jnW0~Q_gi!qPNG  IHDRz|psRGBgAMA a pHYsodIDATx^]W ^$AԚL̬JQUrvlvmlgfgLOg̬Jd j(ZrwOx>/ȸ̗wŹGq۾ґ#=0#=0_kf#/6#=0#=`=0"G&HH|{`DxFz`FzG&D+=pmU.g.w_5}rW_9֜nq<7}vg{޺Oogqߴ-;}[n>j>7r@=R\!PC7o;}s/nsoؿo޼}qSl*oOSK~hkuG6zԨl>cFnW1cw'mo~wwG1t 7l:G}3o亴jͣA?2G!f&﵄:g$\ͮ^eʕ+ٵk$o[&]bj\,+AV?]O6|}6cfcA}]Əݥu}ݶap1cC>0ro|ol] M +Wf/]._]t)t~K?7Zyhi s?8d0PĽ &Ήcƌ @~I &d'&NymRmy#==0"GB=;XEp\v=xٳgL" =4Z4pМS ;C.ᄒkF]QQƟ/=/Llhw8qb6y$}&gSou^{b4}Z6IAAXi_T[>NeMuE=#hhKN@DxPs!7Wdgs~) 3%A0`qm`E MtZpȎ3~lI&̞M66~q i;=z}A3dC;+p0?qdvԩ\cR`LjG落d=8~!c??}l33g tD}'o v3"qX;E9JK>|8;qA18K](RjSkt[CЧKW^FҖR;v9wg3sl0q#lG?"{:N L9aG=p''L1} )tž7>%( h([#N͛;77odžVU po#`*: `;1s~9H u07YŠrEL:5;wNdl)φkrn (G'^hzk'9B$糣ǎgN8]p`c2V`ߩYh4y4mw)?\pk!o?Z=0"迡G{p2Ћ/gfDO8sCplؾk3]pAdѢl⤉R0aGZ9"s Љ9v\! w0x?-JKmj 3 A_=6[o8s$ y4E #\W_6qLuFuQb&iCO3OC AmC7u|01ySK#ݨh~Żl/#`/ZnNȝ2ڙ!x"ˡK> x#ܳF}s6W  W {o;D㐿HtlF\tٲlYپ{#e bX"xFZP kDA:qV9sXx7bDhiRz;oRWB&0[q7Vh~K91,^A?ZاZ'vm?!; CbvhU~ʨs=+>\Av\PJ_+F6y6lhLohkX+wyQ1|͐r`|i=~7}~)1{_\O+b4 e?M\c`kDmn˖..Z`<<8 {XvD B _oI]~ ۾cf.tOsl|=m[ ll6"AtbR3 P͗z=ve9sM+? krgvN:RrԩӲ];wؽ7.dY˲cG}cǶm֎zȒvl^Y^DvdgϞUűO%ik}V@ '}w:SLΖ.YXLYӳ܈G}/PKЏ1H0{#g$`>\>o^z%=z #'ӅС&шєgϑp! VvJ:usǟ|*C~͟޼oϞlydǔuLQFΝ5fH/ 2Zdl)SJ]-^T$oV6_ҁ}-l.?8~"kWܳ,⢙ppj~?(>Z◿~=YZ'(kkkVvwz4 w/5k?TܷRS/f`I+y!Ӹyǎe[6oݑ\ND"7U8o\aЧ?v,9(]|EvTZg~uF䕬T EϞhq؈hsG3Ͽ >O\Ki}T ~~?"0'eAB-mr#~ $baxk_UiX{ H7^4Vv C!)7YpO%dr̐`.7q*SQ#x' ?!]>NVC;@<9(+wƎ;zgǠsk|?/YcKb橠O7|"6mޒ׿~ػpwǿQKHt 'ŢhAvV;>5k𽆻7:iߗ81n Y&hf5h4f8Ѿ<4i0d&N0Lj.[ܬ2Λo C'yҗ@/8 ac]miqNrB0D0Yfͽ6cQ3k')T9==PkpݴoK! lɒ#J<;wplmWtm7n;b1A'`/+ϧm!](ӑGgD2A\-UZ௲sgFI[.zp87Fap dQ8hXPƻo ӤIxwFE'\=.ޡoOS;xXqp8_YDeX"{6HwDg\RH}IBq'Vhw~eI(b?جRMƓ(!igv`dwgrڅ x?X4 s8'|y1s"-19::I㾄b=rtm\!8h9vs\e9\2m+NbAgl4/}wlNŻGb{cǽo}\ˈ&SAwpثC}P߼l%?lb&I}z`$M"p$g2AGͺCxMh6+K]H+Z%(ONc(Hl"Cj7`Dgz# HVI\;IO~]I.{ܸ+!X ĭF6ˊJB%K;at<}<˜&@`9_qh$h %T!8s5bqjC[:ڧnhy%c]Qm~I.GVdC}j}y#cs1}vr2aUޭe;_$q%"ll2Q HGE?A8~-xrDзޯalh,x:[ekx^vB6_;g)Ne|w݋D7ܦ/,d !ϛaP *E-Qr?ږ,j:iUY&8xhs,!ɈoHLR,ٓlɻC,k#Gv2!*<3hKWS BLHxzD& ?",˹ebj۔C6 3o"#8*ORm 8x3[3g"dj?=/XhK,p"<-'֟ΑÜ>Շ#uFpM<!cKj#OSO|j 2"A GH&ĺ yUL7@(NJki__&1‰!&K;G6'y@c90R Tm碩Q-]ɿ9z,أcqл!̛{nhD!Nf8$~G8DNx_4 M9&upΰAr`Ug`pOc3 nwTew Bh8O*'o~3hj̄NTh Hֹ4QGIwFr-fw4?1]½p 6656قjВY8Ny;}#(twvV m<6k`3Bq  ;h?O7}Jq-ΑC>wl<1nב j=zX!|N(Vj>6R&G`ghtE` KMvM6e4GVn_C nl' NtD'A\O"ZK+Džc\s%0g}-?o;w w+@Kkx79D g<폰H4i.`roȉHԪ gw$|q~H(6<(9rZmX*3O=i A_ MstQbn:td` [_HBȅk GLrSX >E; _I|8!؝!s} }c!Y-C}ll\֘ GGG̔S_BsN sI78ѿ1M2U?4ذ"5޵ǐM4{89ch:xAt\ES==մaA_bB`1N(-;v" ܹSQGSRj!(i`*#4Zĵ!R '|! AB&wm AGY\ 8?mO#󋒇A#ðm>ڕnba9![uB>(qmqM{\?] nLtŜ@頒C>=b|sM|8(R#D{&k Ѻn|Z,o)Z}TЦYlTcI7BH9B $6. M$ޣښ~/ˤ?͔?խ|v%fB)Uykp 4F}w Z 57 9}Zkz΋s'>4J[Cl> OO7ԯhK!R˦\ZHtE/=-(gV+݀)}R=G}ʿɕMض}gu&S8j%=\;8u eBe; Iܑmk!7G|C ?w>@zI8A:%^XCEGy~J}#N%EQWI~M+PMeCB%9-`=Ň J;YvD-٣Tq7V ~=(  @DU.SwwWݗ= 52;܉wN"|x&RvkiXlnRM"0e =s(Ii[h`'µt!Dpg8t?A\S pGr(?'"'9f^nL(a3ظR?CIzQ{bs1Ǣ<[Vh石҅iTjI;t#c y3-֓y,yȚ4Pfnj"iuBy~z^ND#:(x:9 ȒL#C ا9'\gk3'H*l,Fpm} ww{ŽF4Cp\0- O65\L>8UǶV5*3相 .qڵ㡛 Ffk]c*1>.k%jakŠܻj)3ܱꛂijH-{}uB ]RūI1iکsmX.c3/n[e*cL2ks~{gsNB0q[g-5k_GEBNsT/N2%|ۯd|i>gpN>XA0"u5)BO/<z4|"VEfE,YkbWjVW_@EDn=u"m*n'Dy/,"|tBAsؐy|y䑇'{jԖQ(p:oDЛ`(|wjTH6|}|~ΝO~`?RMzD?pX ip}OcӨx ߰aCANƩ#X_Cs?Š#Z$FpM*ʕpM u˝?XI,lnKy=3,;69`VC<}mX qP)XHC~b鄓gVQq}mVoѨ%QfUoTfbuxx-KZU{k`zD_bCL^7`u{MrwF+}Vj\NlyUldF;d3.؋r?U)@aNq쵉SݿzU ϩ&ZّG}6@B;`*6E,pvjŷ!>)MuQ S/sUh-b䳍ypp@5:gK3V;pH8O)}fOvLGчOH%0=W~*75c(/_n7"1Du\; YXYFruaag8Td"qYYuR9im>k/ ӱPqi^8D|N`gp }tR&7%f GsGj ~osCgj_k֮3!1sb ?PYT4Cml=.wk0B>x{.~=3jnpMj@zhDmXy9a08>"r(L~O7欝T묌8o- hD]4 o"yQUj]9݁n^w/,S*VAnhp1*B7^늄igXvQKm!! ^]ݷ}+dUX[oи3㻞64$RPƿy_ BhbqB_L.Ej(+6' `( E*S.`̅y+>˄/߁`pn#k/*)'ӥEf|R[你qXPVڬK "_~)| dTPw[do,jԽQPk}m1zeZomp{iNݞN֜of k+x ՔƉ1% MP;gW{yx\(2#K ۨ U 49p(s"9$mMb>Ny/Yv_Faw7-ÖF.Aı @nutSyC Bqt_覲 04eSx^V Q$γ-[^<!HY}#@\\ne8i R^صlY"l_qo.]s/XcmR(!JFs=k^E0Bas5lX囃^=̗d wcD8xH%&p11,#_`\6m!buFi{IC8+c L4 xF8}DI'uX-};6X&9Q8'J3Cp]Jr8H\yN'}J@:< ׊d"8wehKAn}d*>v+ 64pWmkɣaW>BQTۻqߘ7;bݖ wy0X}-nb\:GPt q7SB-,),t|&λQPwnLQ/Xaõod>640 X|;sg-SUC,WSNAu{\YZe/^vI%;Q{HI%qa0ϰ$fSAhq:;'Ꮹ)MsG3Yw)ZJYL21 3u6+ֆa^m-ap,n""d:ءndN2|,? l+w~Ns~2f`S`#)Ӥ,n NfC 0y~ٍ-ƵyǙyLgԔV}DMhZ,SX… EQ0O쳍l<@&`ы? +Mh1QNrrvHl$Mby,lA0YmD51۵/^21& Ξj!vt0r1t#8jr#J#A >#,;Q \iRҥˊ{G릝mw+J+!HX,;uۗz2ؼ681~O/t씦Ys q Pf/_0U=è_CG6}NBh?BQot" AC }߆U Ƒ̢Α5) pz`ҁX h{$ĐX=rt/ s-z`f4u` _<6 %S8$2SN ;nɂF'kfz6莱ЋρGX<@ =? A٦|\nEU:Ps-+OOUŨd\LV+2@( JZiǰ# Mϓ >LJB"j6#3j4 oQ;"?ÛpI#g)g&.9 ?Z<4ld"At o@M`Z7-s 3&{WϦΆނfg.X+Ͼ}K]BA2.QXqb^E(6 zP(7aG;-/_uv~LDPӵXz+ok&)hа)g 9S"ߟvӲxL&v^CND)a 8(C6yX'4D`uX]JRZmz+,c-oxg̒]x!?ij[f78=ȹsNG@ܳ"/Nk󂾖8->w_1"H" P{Ꮙ'`y LĘ9WUk&g&Ug"Rē4r8T l:rzBE"FM{W0^/m޽NG;\ ;7NeZ_4H hg,6ᰉ՚1O~~98 KAn]ߑCXMz#IL81{Bo~j‚Dlw$h&|\QAI%df}TQ)3qNl̩hU^WN5iF f1"yTEz},,y@'MסDi8Wv*4^\"c[$Eԋ;S5G'"^$8rpժk3VoЌ u; *"r\(1WsH)t$p=idPsJ Ő9Pt/S` KA"rK#Ls zd4^?:/}E Jpo$";TNfQnhWN,&4"g􁤋F \xHj~Al $Uq.A6}L|u!xqH26!!:d=*mUoDxfnٕnCωppK@VPBY`='wa)lPoeE+[bwvqq9+tSzIƒYo"fRBUZ}Q>T<*޾DNc'Ù u\CG6[&9sQY {=brJ!1cso08'ۤp{zqS<]6<;?8l`>˝mx.[&Z* ):mO$!|@+ˬA}B0Zn>Bw]"[S[>4NU3qMoV:=[e4K^u ;9ǧH,jpBAs;Tא7E'>aVtd^/6\('&'3'{~M84,qs}VKǕ,9U=&EuF pGt+{clܴ%Ϭ%3)&Kp}¸|:,kH(Z ^+I3oRh8wX)3L{C$l0{S Ʊx pφ_=0l?/EeE <[\30 ^lh8x|!#G=Ί^xѢEz_U/jSM-:wkؘQ5dW$=;3  ꗿS9g6m?׬XGBP=R``u4wX´CmEs Yj+WYgOzi殗h |zHB .k 4e}̮;~',Q=b\~]Vr*x*-Nx]ߋ d)c> %gJJhc䳼.\"/UBb$jQxuRaeX'L+bfӁ)A=k,|,W*g(UoaאuߪUx*{Hm" /fK|)m /mʉ[QQpY' pvW[B@G띧LELsS  POXX!V/>-EFqfc5()blм֘Vs~dLkb 7hE v x45k>   SFOڌ)=ݪYM HqJm⹷Xvm&\9yVtWAV*MMeK/eU-A=|59 :^x4y6'|BlMel8lJS66 BU\%& lGр+3DDYR15$QH}ǫm*7g)>s$d=ToX?{齂,?G7%!!HD-nHIMֈRN@ȄWQQ  KS/L7/H5VSTHBSűhty j`eW&"Ϧy۬ٳaBW^K~[ߒ־u֮; ԋAo+z UWsϸ_|lf!\nφo;/^8{%yS5%m0+W`qW:x;0C>T&]Q8'JЙA)Zmh7mbB~]brK_ O>F*4^jcEI@Oos+%B Vtn ÆIU! *F ?Fԯ= i iiM.x5Qq&j;f6%Þ;BIY@$X}eaxhvW,_D2=]Vюm-4qiٚ֨x1Ք] 9RAOdO*io=tdO>|_fA.xa}*iA6dEl@pp*I8UmM,{%FFJ '!<9n7(KTcQ:>z#8Y٣Ff[lXjǵFz51r0) jhL-~H3< aywrPh OwV$BOH!Z4y9kw5DäDEuoe{^(`#ÂIHrLN b4 EXA"lB5Q̏Ȩ`Tk׮h4B4m`6V4qzGy˖3 Uٿ\YJ`5Xnq^F%8w89dDÉ/*Է0 贝z9 sgETU%]ݑݥ>Xj+$QV(H2}n ly/6J"MU =61%ŴP=Qڠ7 m29o)2 §!wůD3"Q;6>8 dSgys2*8y.- ɛ%sCYñI lv ?kb9;Fϋ)pPxcؽ@4XV4`A9 >`~̀-#V \l8 !ehіdVy^$/AE9ji86 |N2#DQ]hD[7J9n'VrO h&M0r:YZ1_I{U\ЧB<仩# HAU'p* 6"B(Q.Μ>?y$ UKb웞[]0d6˗쪵a)tx#;8C=\MrUkw¸{D5'`.AdS_.O&|ЮYqrZӊgZs>dpF6-g1b 쪎\E%;tKiIAONS;o>6;Y^{DM$G 4ʓT39Mn x^"ݷoi$ p#U`ǙH'aui[ qCJU Mq=瞫\b͖:"$$a'Q4h7ouR0$Iܪȡ͹!ҿeoti.LC"YMRx#?dzݻf ?lt*i`7VG6RB5s6n{0{ۼrhb?pgy*ioeVғ",~k)t'4ׁ>i$B fQH@hxBZ!{)y7u$tV[BzFo=[1C :пX,<{+eGy1) Fڷd_s}|LrsbKc7=R1 D^^QwHિ 7Mp"omg%!a&裸9$,b;hh L5chQ ͮ ~{埴b+c"vr`@id:sa-Af8B~.;,fuS ~ۯXXXPd{J)hh8`=^z |bi78=\kwj+R"!M~hhWrc>ӳE~izIsN>C/r>D~%rQ&B&;&("T0R!թJO5,LQTKAXu).XΫo!qRq+<+ o5W ˘w<ZײMIцOڔ{ys(,H |l;Hԍ4fǮGQv;?1ZWd&6Eb-V !%~c"O0 3ޘhfc l 2hzӅ &V"R&MvO'tP^A- 4@OWN>ƙH B$ 0[*l:X%2=&%>uhɝ)ki=ډQ5Vc6pv-'I>" vL 6s!ӖZoi ;};gKhTS) !;6Ak"_qzt'N7ȬS)Hy`0S6.тq'8V=Wt!Hp*cFjwRȼ\Zfl!|!y{=dGv3<'w*(4X0$hߗIQ"p <@$`BJH(u>BKϝ;kBe{UcG-,9It CB( @Ӷ!\tK8`)ؤ3 3ܱ/okkǢ a8[ 4/[҅3̲\pLn P^{ZvZi(M{ ]0W^\Gkr7XPZ-<`٧\66XY(hpd "P[MPWYŇC8w@\U?dg 5ƂÝw)q'4DHC؈l&tDC̆LͶ)k>Tg`6xN݃Ҫ¡ԓO0#.>"`Xs6IX]T`)5P>ĎKhRO4U>gd g= ͏H!P l&opG[^(4z( #)r72mv_ńF/H`zakJ64a6?ü9$Ay X;}ug[uLtBxܓ5CYA_y IVam*_y5o&d`"(礱٧c5{!beӗl}k><jPp y#lYA횜-"!A/#Z6BEitݬYM>t0[$KC`0 {3{!c wpnkSؖ`h8 !Dee%'OhPDT x"& '}hD!h .1 \م9$DNAVS IS^"Y`Ov-> Byy ڠI12}_xoޓ9N.@Ce1.X҇(! EBcL E)'B8ѼـvC7y`_,S;%4b}c۲g~R4`VS}m-KcɊ'X&dTfZo'Fyġh׬x:*j9+*i{pkҮx3o64orij@#d#u4&uY,@,lu ;RB!ÄKZRC+¿?mXq狟nڥ D[o&6B,9YcR׺G389he < R^6պ+0Trj%}wݽɦm ί 9l4 9遀.Q& 샿K0uP::`_'p#㓞IݣnQ)w g(#%+BXCM M 4Whj 2ʆ |hlXw)8ZčX8,zQkݩ5 M!vN&ׯ~qkĤ@ ]hh-펷&_\7%*L!mal,$3gNB 2#|<^{#` ]$Ll7[}s X(nw`PC풴\BLIDࠜ7&f%' ld]ɂ&Dߎ囅߭$VLDPaDc·23*Ai-ۗ_$& 7Ou|lП'7yrIH@, s<"}D'Vu١p )QdB]{3#Bp;ZMG0+kn fG mͪpܛ,)~8ТLzX0|l&*;X  ͼt 4t:8-IKFG?Ǽ V߽f{]i AgwM_jfzDŚiM#L13A0 F}{e?T/vK f.&-Z B~'q#}8[‰GG'D;L$p6Zl}@{Fha5Iت7rs^R0M|1ma11d68 sjZKnVXn w /٣@NFxF %p 'M!MqQqj`ܛ]["TͭiCۦ;*Pf}DzeSbᄚj90!-tmK:s>nqP2;24FF ril"rH 8N(c)9e|ϣO!;Wn7߼ ڝ',)ށLZĉnŐ`cX uBA\F!.s[ܺ1|RVTC&AuV (<1c;²,E'۸0VK i=mCR(} Y#,j伎zLgAoS8Q05Ұnc`~hLL=t ͵3R =ͬ$G Fx˳)[ӍJ@10ȦC裆c!hkDРQpnE5Hqr,87q`_l=]:C<֟CH kL{+<-V]ji O H{4W,o K-7oM} ΃ղfAs/>0m>XgmU8f%M̝.X+} 2; |)1HBNPOE ) -Y >gd[tu;9h% Z}.M{55 ̱w7a XL;wkZn:raU[ a0<` um~O}+6jZ}%h>"G Ԯ-@|jD+pXUU선oK}s2e(WRxy#F3D`pc# ŏ!)($E㠽R ?fkb"w84 obɡeB2jcdߡ;dS&8w'u{o_;u3Є=6`zJv7j0ָ\w7ko6ԂC1.C6QCvB6nE)-yKEeMm D y<žo ոy\&. 8<<>g^Q:77m6?7)Ւʼ?pKQlOEcNo]Grec(ACիJ571yPog חgWevp o ;{ _z1{Um:8Y cwe|k\ti cL'8@Fo`ǜ{6/`D od[r)l5cS4Θ)! 5q >gR8, t+ FO$4ԡۢg@#XXi{s'z{i;9ԢگԵOMp&/qN?<_fi7YYk K+5]-8^C Y.]j vv "275O.i|u֙ȱXk!~X eLI 0V((' Nَ0wͧd 1DOQ t˫`E`Eͷ{ #d[:MA0Z)1h*c؈ ַlt8Ҋ<Fג`r>"Qލ&f$$0;mOί[8&AB5-4 B[ V̴!{#:A| SP8L3MFSk{wD"Rd6_W䣑1>4~˷v asߺ֛kMLOD ?K+έ"D /x@{sL@>+35]3xv4x(y?/G$ofr񒈳f>8{ Yo5kĽ*^WYXs"V"\}}*} 2m5/ڢǍc H*1eZsXL6#4RVVIEb];GGˊ?0Zrx,Ű[A.,AfOz ?O?Gmco_?eY+W6D==/ww#F@Fihj',VJEHa@8xo6l}np2-\PM0'[jte B VF聲Oyxdс10C6۟#3x͚5s櫸{k|2fY"Dp˔e̳?7mo)#8oߙ'm𱅲/J!N𓢻=p^Sw?YnG&7m5{X0H˿k e,e믿imЬt\{!necVa2ѦSPsE'ٳ à24i֕0˰ӨM"fjໄ_ꊪ1o&֡ykE4zKw/h@pwS;vrtG`(kI_v@ {g勖PxdFG8y`d1>1z.Y ' GݘˢXPw~˿V,_fVO>\>{ȦJ|ᇍ|㧟dف6H?v斚FM{(qhF$'ah!M8 ?f.BInyKZgC<`[|E/տEM^x>{G^zl;BxQ-7|+;sK/ k&ۣwl8&(:^(/1ovX%Ǩwoqǎua%h7 QEBPh~?it`&"1'mQR b *犷{4{MjŭS1~cr-z6V>.2Y9KTEM NY:[6o~>U߿ ]씩 }DlLHd߸y?ߪ0=B'̞yI}lyp*s^R%yޛZJwgF?.kaz!idgToYg)|Q #9{j,k iΜY6f$4@8l޲62vg>ϡkpć/ZyT}9dJ-F_kL?tHW_ʈ2h֌os` NG?USS7zי33B蓠zĠ/X0I.E{&  eU*nysrC0վAy"JnuVRU(¦&6xz $swCg4*G2Pdx¦LMXh ~ʂ0OG"+$Ү#8+(5}Fwf(=V(\*|owܹ6e<*Ak-U1!U׮J둢>΅ \QfMYZZ0-A78XCi~It x P !BE7 w j3b}Sk#keY1YAv5笢: 1ilFh,G|f#$װg' t%al!cƌYʡg.dbPW HTe"* /lx\4E<9wlq'qk6JmXA@@BY-pSK8mpn[A<<GP"azNUR޽滅 }hįuXT5%B~bi^ /L]W>( USp`5ѻpdZE)>ZTٗiy1рh ?gwO(x":Z$O?l޼%`፞m9"7֍"lA:YtzL#4+w]=Tu\uO?;4sM%|~4jѼʸ΂@thf TiՃ`!yCq$xܽsR 9Af6?;Kŭ.k*pѦ9Vya *۫ѴrDuLcH^< TH;/s 88A.<]( _tX0ǩ"-Z`Uu#bZȕv(NFF|si~SFʣϝ~GY<10-~!3㝼B Y쫏 KgYb}V0#DhdR{JUww޾1VXd,9@oT4y^b X)4w2Qq{u'yn*U9#YE?@q^u_n;m;ッdIr(Cȉ64,L!oGW tRmKflJ%)qi(yQkZL[q'&6e&b<wE땽u,g?{q4B0rvS3ݢdb#c}ʇ7o(IVeG6͎qBIdH;JY eU΋bmh gehq},ZO)&5Fc'T.^rM[8_ p̝3M[w5?B^+߮}l-:,;NS5,/ WS%\|3|!!47;&9 dqbѶRbEZu%q"v%QF蟡mRȈ~{~>NՖk2͎96$X77 )ϧgqV|+ yMx3`1FP쨍7+> q*!5/"n*l1xg9햷8 L6Yt.\*x "Tn,)\¿VD3=IQ%Uu[%1Ҋ=J;g=`sB]tWwKCbz:uT2nflU*p ¢LLzDLױ}[9my$6B3qifjDBnFܯ}J\= 1.$\H@qZū[Fyn>!OzEȇ͏j]m=~ ovRMQM; F#4mh%n)L;ATdX?Ju,BU]O!)O6CLʖ:u!4{ 0}(H8!ڽ.1EQ#f(,2oL9~ɉ\]g,Tg*{2mT L-i¦xiw:PtoNVT9ڱi@K&h״گ#s{ Y@8rɑ x 8euj|z}o\9U8RLnQݘ^]"B;%wE50OYo@I>ZeTg'{bq~o<#hгTy0m=nevHF/#i_:**xz_ڑ\|5;wo)g,P581l:6ALfWioi`i-]@GAA@|2q=У;vʹ! .2=9AXrfYr4nbkiE`̖8(&Xd,W hlMs@tT:{8e_ѢF X$si8=80,c|*{o4Ng̜hsܱnUS߱}}\\3%%h'OC6,ۺ=7:"oJl >bs$ Sq;%hC`Lv^B~(2ўOxf |e'p8%eI悧y>1L(Q֗Cg-oA;}_FvV3 wF>/t 7 ],#,LKϷ>Mﲙq;* yFm@"MH9!hhI,PTbs>\>DC1&O2׵(1@_wanGDur[UtNлʙYmSXT(́|]/}au"+0 3 :STRя@;.rjY`]Hj'm(0L*qپB[FCw {0lxYgsPW_1n%1hV&MZ ^˧ZCՏ> RUM\o1_G9N"%vX@v geɳs]v-" NO?Ի-v/ZfpcMh^ds(LGfH3a>⋛مMX&XhW|>Ɵb^V Gx)a xebW_sa;l\dx~/>p}uRNj.*0iL:nA(8(W_+A׶M8:r͛ eeߡ&~+6Ryw#8FWni)4ly!" (B}c>=#3O==e?7#BV+LIH \ɳigL3]}ѭDfcuqX 7niD[[6~>% ʹc659k0/naXCăü@2+f#j#N}}akʿT3k,sbɧl$Eڵk 0L;̙g*>̃2 k9püa;ewMrb~hoӦN̞]$uNO|g0.XKi:0-3&5@{cҮq|mLzp5b2 Nj> Yy+4od$r&*Ovc8X<~& M7ex>E)ϝ7o,iz-{#UT{jV}. ^Q[ALqP~%%s-_4'R2v")A7ikGq-r7cFN+െ.fq[p{gtJ\7ӣ0" $`CPHIN;:⤴AH{۔YhW8 b.s~80(1:XȎ"-ԩ3فYl2pp0eܠ7HO&# /S?O$ШZjh .PbieߣzAcP7\U.|{T4+aB8k j JƐ>ٙk}M:wvP 92I1FЛ xjFޫֹWLCf=~3ANJΕWlwJ}zgͲ Xvέ mA$FsGȿÇeS7>D'<<l~]@{ | LNZeDG3B{pO&6B ;(Kbڼe[va[ 6L+… n= hMxndT F-IX /_{`Cs &+n'<BHugm4aSJ [1pۈ߷4 lla!ٝ16V3OΘ'@άծ;6Q('ͦmuQ9??֮0#ޱcG^VM֘cl*,U^RŢxC_ԄekO9 Eaf%y164%id|:OyXܔ·,JRϟO#}=й[IKj(6h/:R?뎵7b_Q $l`z`hj%vܙѮ$V7O>,6 zmC+ܺm,Cܳ’px|BbJnKh_LEؠ8EU.u:bG*oǏ>l];)!7o6Kyÿ?SK 4n{6o* {aaq-lY3Ol )&gΘ-\ >}gkmهώ׆'%kR-\Tm:m6.M &P. x\Ph&`G?&L 6n4#wzX~@cA8$qBQ FpEI8 %C#-w vm$KTh!m2 ?f e[( ;Րhaz b!`6'f.NCڰl׮=6CZr܆ [-ŪaDޝP.y6Ҫy]9sfUM6揙D@WM3RͯNi+> Xe=)qD+! m̱Kgovacx\ ɻk:س4~S&)v6dTD^(w Հsc:AXݻOTg;w<>dJFp{s 3l5GU{k5U9e26]eЎ$eK,1F_ И20Ή4~<4߳1s4t2}c;Z,i\՟8(`f87c#&%]2'z?:iPxIi7M[`<~vmD ,{K gប5DSY+&<8ͪ6sLۤvc&ti]\]krC .=Q$#u2ѹՎuPJr$H_Pgr14ۦ1CAEl~e/Q('?^֭ͯl}֭[=ٟO}6xO* BϫP9x1KcY.ݸi}gk@ĹƬZPa%]}+a4g=}OGq̇upeŵޥmʼnfPfgӠm*3fVsOdl…"ieꆦ/C3BmfncVJ9sJ庢{1?x-~[ۤu-}QMơY?-~kMs?Ȟy);Ls*K+GĎ γ q;wA#SmQ߅%fB# b+: ۰gS8IZgƭÓݗgy7m~u0OB 0.vD 1U`@:՘ h TvV>y6Sd3π.*F,Cà`*t<~4~:uJG\Oƃ`57QY׳)uoW܏%>Q33ʼnF_vw.c5lر5d64h`^^;\_%Y!*Y!BC3&\5"$6VbK31n ?o)/=X,ШrT4c^xQ]Z%$5ZaM"$0&h7Hc- SwLIh{ܖ%K>ʹG5AQN4߯hpb@Vܖm}bA^s淇ǴmxBfon,kK0B4mq?s+F˦?{dY2c̰/+آOrQe10Eba@s}0mMJg7rm8<ߢtDq%}6eýb04j?~#v3du&xG!|A+WޓM^zUbͧϷvFZQb}k7w-H:͊͸{rPE" ~{gXm ++Ǝ7;/m{^xyu_dƩ|e ؟WC~t\ TGlYɯ]ja]L6)eqF^MM/OV*/|Ex`͵׹h„MSd2Aܼ(7k *0,Wpao+mX2I=KXY4Wp|Ɋ1>55;ޝ.*{`|Ak5/UGr>fym@@LQ`BdyiIL?1MʆT)V6Ƹ ܓjEbym}uyne%q'~ޔ`.3|e]FDpޔ'Ah#db@``҄BƆ4s5[\3:4v1֢f5&N`cgeq]t5s> 96M@ڮݤY»D!1RlwRۂ VwoTX@?M5ݺO1p08\k1c󌱪cםhI>+Bp]*7}N@(>XG@Mev7r)8_c Z I`8} g,u )+CF<T*eˋqĄOhE)ٮHP uQ#spIfE$UG"-lSwYceM;?9gCY.}*VDt;8"eig .6X_%As9w@b,@}DX9󹰬O=qeN !?oˡD8C78}UHߜJ< 𴍠>A8|"S"Y}D Rzt:X1IQ_Gvvs!rix8 T~u$ tZ%!OQX ucGUBTH ye(XtXa4 SiV)n܃P"e*3W?"xGz3jM[s}aiλщ+e#kLNpQ%m:eÏr`7@WV{\jCA uw)3<]$찛G8N矜>™CK4QPPҲo1\G@PX0( YA?'4{24WZO`r`#q!+06F8"%^-Y0{Dn̒CS틥=p'WFH-7duD`s2 hVα^l3pyIWB:U)U5[0K2a<i=:+uw9Dqn@a}*1xF_ 5Ife֦GQO"a̼sGkXydO'eN`fz󹓇:lyjC1ϸgm3gXl,᢮7z\PX?yRO)WNSk(6t-Ykb뽄-.9I&wbhۤtguʬH1YvO}=EGR~0U 0']eMh`4A=6􂠯5观efʪ NZZ*d-;ッ8M2[/f&{ͷ'xB 'G>p@[X8/ |(3ǿx~6YYoel/V;uQ큭z'yN=q9^rBM~9[sEZ{Pu*xi0{:&ȑ2VkP}O1âa{rԿw|5V<\o{m '~(~^6>Ȝl{Ϟ=[oi-6fk֬}mX)aL2Y`G %! ڵkX8ct t~ߚp`LidX k?2_$}QC̆-ȽG蟢,J 9TcsMK-_S:̾HO#ܐeh̉,ϞxqhR{{]e.ߡ ;(ڗnN|ǽ٠Y#R^9R;2S' [!DPܠݷj 1;xj)l9Yë3՟ ʳr^38UFK3f:Ї>7nE.Y+SlIsyU/1>H֓3cyhlhnʔmfs^HuQf~f2i|B3MŇO"+/^4n8~13ׯ([b& a}!f;;0m:h񶵓D CKבf_Džef0' ^;5~-Ed0({;h.2 g1":=ñw/yVA˻l[RJ~#8ryVvBȣ<.\yQjd''*%Պl467q[/bUk23] s$i':L#ɽ>:=/]S$6&S ,r웑o{VK(/s:1ٓO)A;wˢ$k|HW[d46"kC=|8&ԧnΣB.EπBG#ḹojLY e{%'lR-I 4R߁م1TA ?: qZD V'{0 ]Ih']'I8OK-RP{}LB1Zߝm:#+V#"(V4%zD$=!ػ< X _SrR4u&s B'+Y P@pr ;SMߝF=V~S-ھ8cF|BhA/{^Q=DL8n"4?G#}b, 1.Yn\M ȍh.No1*i) |WBlZ<չsvo(@G%(5F,E>#V9g\>3grq8?͊BۍL'JQf=ƈ03r2 <,,_bw@HqXF:7JنAӿk0p &5S-'b,=!ĭW1ɢo8âLpeSȰxn9\kt5{ I3s]XCx6nX~nC 01Ϥkh~%;c|*c=DeQ^uoohkF4"҅J[2a)*/ߌyD )!_b'>&a{` a&Ri]+<w/{[:2'Lϋ;$<ӫk]Q@yhwYcq^l_=OkRׯwRTHR?F_Wy]*!ێ'2W~Sۼ7㵺 0')!7"gF1׸w-XEjN8̱82}L ڵsg]18 ƠtB -6Sp Σ[&ޝ~v/FcgB>H=o)9?pp9}n@N"b=U&V\e>ği{WcN8w*ATfnmA5L 7[*v':uM;_CaƇ}8j74i]i˃V[iEodӟB~ۄ: jI߉iuwL ѕjWBC0vݷ} 6C e|1K_ ˚;"Od+1ٶCE۷up*վ#ܸ.tR8"朇8q<y5q~6´;?ecjv B[$ \9֍{eF[xJ'0Xub^k/2 n۞}KrThu٭k9yeVtD2P. 3l#? 2:|;Yg)2kxRmh7n)D`OOck]P#,$1')v;Wte4Y_ ce4˳bkE|_Vwh9Gx=K")ӮzW}NV; wRcD6@tN ~Y⎕5 2B kg?!/ğ >O#G[l#N/M?|r+']mg07(}BC;ݩ];wXT/j~nq1l9Alz:ǿ}$_eP/DL>1GyJ"qzU$j*U1[G6֏ p, @yϓpRh]FOc#:sh.=+,Y~ϊlbRļIV!v/)2);6H:YK(fg?d;$QNJYDӅI9E=Ee;WRì"¿L{+u4z ]V.Tқ_W7zf^xОI #93tвL"<ʞ}i;vjV;Pxm}[vpHd")+񰈑SbvĿ҈ izHw"`SS?07$[d@+Ua.nvIL2^eȁa!&Nmf|qM(^ҋfOSEp),6_=fo:Ț ᴤU]Q!Da~/EsDnhw3`Čj y3QP=ьU@iq_]ߍɩ=!_U)G{-r8͡۸_ |g$>Z՝DiaLL-(Pt':YJVXn%BwR;KOF&mahuA K[|d7MuM8~R?N "%"RSؤul\i!QmC`^QT:`8dp0ab{xQ \cNWS#MK&FJNDDd׼gm[{v!ɓTL򅿲WR%\K2MVOL|[F n1N${5[t$ܽ_U.C'gv\2/z/\'P/tN@[9LgiVN2\ ヷ&(mTjI- B"v̈ܩ;[nD:H.lsߜ-۲IZ4=#Y)}E8td&#Izr-h\(5EKEqCnFyxg7yy׮__vkQ2Q±ek%4;+ʐe-1AB(bwA@=LǏYBb8} PͧVk 0OCHYⳙU0 s".3jpD"v&*0Ф]2V#04g0TG(#<׷_y%{Fٯ~%Kb˗-~% ,~MXƛV 3\y(C5ke+ ٻv2O_-~9(o=kaìY4N.5dPfAmӔNW{QeIkS: b*E :^DE}65j6,؈,*qjea$du /~;7Rp'7q/=LB>2g\2c,sƖҗ ZN YluPcZƢi~k+~*0/^o}BXU*jMI;\5Ynߑ" {=pnjl+e 9VTWĜYU18ÜMaTOQލ9'x±2 r ^$KoM8yy~"brLmZ=|k{!\ƭiG"ʝBHs($m1,w9\;\'Kld4/ lo35в|쪻ffZ2܉u˃q< ?a@jf3l=[.2&ߜک552489s`k׮5c⼡g](ջpVϼ)3 ȡF|w†hRhiʕ=YӦ3+Y<ԙӆSsmT '6Lg7̟+U_VKcg}_a*Y-ly:P}SAwLލ"irrQq8L}3G{<X6̰ ZcV /ϛ+)5|QRÄ4T-;VdXS!-n\yߤlecRR XHΦ(-4f׀>V8CM3M۞ h?G1+XӾzS aьka'eCܹ6R;//ˁ<^i*?1DGOuLw O'L[s .ۮf6.}Vq+}'7 S~&$zmݺ668"= ʹ/U$:zWDV }}1bSDV;,?◦ZrHY#O$̧䍼s#Z(#S#8|=!H.]cAAoDhr(W@B vt)m#rAf9@&{Hl 'haE(@p!K݌bK>ZG?A?vo 3f$JAJ2 o˼&.rm-jV rfj{W=cmQ0AƄ (,6F7P߰2>Ev1p~~.Cv`>_cn{]zTmʆxl[8&p%|FpNPct}|^mՃyV8Wӟ\?ع(0_(Wv|26`~JP Q7cp!/)Ƅ&_%~fdeǘ҂Ye+Mj55jpg`" qhZ&P alwQD &0 G֍M=|$0"qMʫ̟/nhu}Q̷k}qǁA)Ƙi]nu7\W]Bq΢8r6R=F*W&#$Al=ThےoUp$s,haI^/- jWdu\'jak:Th>-y rt:]1wdQ ?T˖-5IAvE$'2ׁ̇XlV[T;sq[>V`ԻO/|os((]r{ŊpGҒo(i}(h8("q 5 EtB2XZ:G91}Vcශcr]gH,¥1tfW26izrZmr%5;jTF{,Ư6U1 =s}`Udx5-w͛;7oD曽g ԮuMD*ۇD8ӈj纡l@g2 s7߄ G'~4ѺWoxsj[PcG#kcSW9.W2ynϥy`/\2E,jGoa@fovygbz Hz{_3fD)^y}E58I?ų*%Ȯ0JΆrٞ|qHe(#F|46q4޷ F%'_eo,/p`y]x׆;&@᦭>YhyY،~o3y\&鍅$ӠHW0e١ږc|lv{{0qEhE25iw16 r*j=#τ&:SB>mD.iPL3}` "l/*S@d;^)3Kc<͇Ɣ&W-o2^v C7%{\_ x)hvbܰvڹ{OKSE_#! Qw+E}3M7zy,޻7w#|ctJ*VK*B1$)t|:`Hqa4"%.kȒ)"DEz(vWcN#U,\\8 " J}ΉqT5k4:8}~h5ܲ 3nK0g!|l(™;eԏ6zfl xm$JcCZqc~_ E+sh &Z;cXfՎ#yMm}{,ZG_Ϧ: SO3x&ʋ/Y dO6{T$u{支!cK-J촙ͽy="7l:g)dN/ 2?C`̭P]Ktw,ѭ9LFߘ{07)`YjAZ&Z;[N{#(9Χ4)Mm@p.2(zXBne$htBy8>=vLכie}oSNw01R-~|5- hE8[+|e#Zy ed+֋䰪2 9"B ,}r68.)hd=+ gv#;\8̴\ʻlB}4_X~\,))xkl25`R$DC(Fi1yĀ9֚iy<7;ӏVhGl§8|ڏgxwx]>vڕmټ9;xfC'I^cYR͟[O(@6Ma[xT.hށK9}QYZFA Ob#+{V*R KlExeJ რF`*ao댆x΂g\h C/\&qbz{Dz{Tn9V19hj]D?:/l@hDf3?BC*< qΊqdPN7ÿaד%,yGfVGX,j/a9ChI%$Dl1flpAc\>if4rMp[׍̹ܿX$Ѩ*sZGXdk`qؾbA< Ģ\;Z cv )%9 4 'b/ۑtQ/C|Re $*꾁k7pGH4η_|Rݩ3_g !?hmq4kOƧ w>0=n0Eb{Imadyx@&G5u4`эMOPI63J UYo=LvH8$h8&~O>hfnU/z=n]b=U׸ϗF2n^DR"mnYeq-vpJ+ iRB.hfA[ć5U&"t߾2Wh,?ٳO? DD%_ebu?q"!,X$р}Q5:/!lUׅCaBt1R}VOscd$D9KG<|({wb7ګo{>ع9e;ߣ, {T,\p;5ڂOx_dbˬ;!ذйU)K>;;sy lb\b@ ˜^ X)`aj,ԗ/]"[mqo8I٧K>*S{LZw){nLh 1,t02ɨ:5kd?63 T9)w&A^V(}v]wǩ ݴy:X=p J&ʌـqb.alBgI7w7/ e H;Y,k6ի/ZdT<۔Zj#݀{(!"gą(`vJz7$pk˗;LtqYBޜ,N<6r.Y@v>b$$n9 Sh@ߌk:}8(G^{<hBJ!wj:t"n7>F$m}O~ײ !8rmY*r R!{vw-DU7,)3>/MO -*7U GM~?ly{MbQop;|"8RA)CDq 5pvAg}JqlN;+_ t3ˬmeNYVrn8x-N8Mb!ki` 9 47ܢ͆521o*;Qͫu~ Do8K(V)&p VUGK',PV>[#H $ǘF7ulu:}ى蘜딤%9t(gK' #*/| .;lBkFAw^-쐥 I>l^X4*v )ڝr#Qa`]/"5S aOp28=ݻ ,`͇FQOFƼAqJ|,ƪ7!+7veG>hb'bDߤ]~_CpEV^]&S rJp08.2A3wb:z~|" bg*OV+W؄ׁDʊl"h2qҴ>l3O?)Lp.b"/P˜z~d86íc4;ƍl kAE/%nEEuBtffNFjuڮ汕Z'׭ZmMLؼdyA _Jọ:q_JVElqaL*@Wx$Bx(oZ,FvFӥ;X)bF3T' ؉SVIhq69 H-jTo[EGIo΍{F9ߵ{i0{WTԈ8YbS`7 Єu=Ϫ_8* d riޘ 0<%S-W=(p7DwAXvIӣS!p46-hw7@U+іvb8^/ h/Y"B2m<Z,`D)~d%}`$>"hNY@Zw.@9+ &%a`7שg&aXI,ݔTD3M KlDu\!WͨZI;F/&{-MUX"LdT|HA͎dp@ -C4we,Q%<9ASye$^%aM0d KD)XD4I;7xڐ̸'꾡8kuzb7xȄmg*l>ƵjxȵGuC٬B#)ר+,~e/~C>4:h18=~u'4j_4pH`-FP4ŋgpQqu3C0#<5՟賂2FW 5,3u[H%0T!C;UGYv{= g-Q`q_ta {8ݜ^KPfQeBhg(HͬG>aõ1h3D vy=G{3R暘Kf9T؇, mr4Oka#3|Z}6}4jiP-jgU d4v4\i'3<8J8'MTgN{b! )X.0VreDar > :9(,hD} <8vN)?g 2$?evv܏͟f,v4Gqk<-J>H: v[+U fpQ󸞠uSHk.L9ce׺7 DK/PL 3$)l9"T n0.\mW`ܵ) ]YG"ڼuebv_xYa{pN%6|DӘdTd!:g2ψ,:6] r 79(ޮ^{yf}ZIqeca!SX)޾5 ] o[ßergmXݩ?*;)<νG~L[ƚW4P5D $&ԩP!0 4;Xbdvmr6 ;\}* /@#%J:|0/\7p6n!R#ŵ`5P}75f"7_/OɐEC%1S`_YIP3< h8Fw.D`sdq^h&f{Bd)fl:jA90}jhW53 _#Hx8\GnΨ,v>Z& Cpd9AV4d2:F;G=ƒZWEal9VJE+; N710gD 0A=ia|I[8F{L\@hZW=WUJ-7H|_~IK"a0nfK^C_bIpI]|`3ƉVɇ9w822hq94p,_=,F;AV@~p|K7z\FNE1>T$(aڪh2]yGp(o\DȳP.(ªߦe߬y'v-(wm{>qxz5wrlh~g*}f-۶>Z>{_pkqi|Bq&7No6_ /LDdpZ#i9G(vTovLq.MxP#U@pyo KЛ qv8 PQ6N('[+g( LZ 9y 7 p˚?s/ RڑvMѤ9H6Mܠ7Vs,yoTaH 7J%A2v|`edXYW_-4d$Ջ>ϰ1hE:ln7 >v\no$LK @W% rslQs)gZ͛vb7J_λeDK&w*!!Ţc5k2[w f8̿}W櫦s Q+%KZu-CP a!'a]Pݬ.m#-ώ~6gڦbQ5,~uB(OPS (筞Ƙ\xfpCMN &% +r*JW37QzM@]im9(F$d˭j+קB2Z i;gA2+h2U+U,/y$Y3Lww~itɦISyɘ|3%O(]7CRI:awIMO7Gzȅ_/жRHi^Tk$[#lsOq_'oe1唗kjZ6*'{jaER@nu%JB^OWFeNp!ЁٚX5wຐSeޯ9.,}_<Bg1{~k=H&a>.`N64|6{^js2K'7]c P:jY%|Do /I jK ZѽEHg|З^x^~:{TH @o=%^1c"Wuk֚GpRM AODV3v=M"ߡYw f_z(ljAi92 w%Mv(#?Y9zW\{?pcaR泍[OD&M}9LVr>3gWzi#i }HikjFݨ|w-?H祻cC,') l{fS©0FVY7jU.EJZy!o2FJ6S x߽Z%!z&BCSDE1y3iW5fogCZ +p "0̔**v >*Wx>'f\#,ֿT '1zIc9]!}4}~ܣrd߁cdKTIk#>_G [y_/}0Ns.Tjf󪯱y-# eށ93O!9՚}zM81y{UOFò/CGB{Ѻ,-s>puos<{uZ`Y`YsVuI)cLBB-ypot3+3K`&p( બ}*CƧm48֠pvLQYTn@ Xl3`mJT{FeEq&{>EѱSi&<7!3&{iS&Wd Q[ L:yy:Kl=kuHWIjs8w)[[r3:Zӫ|ުs4Qi@(@'EҌ59h9NVZ^Ϩ?|0BR-w}XE [2s{FfK/ur57Ds}:w[w`>R~p Q(pCPE&q!7Pٿ9Ybm\FƳ5ݰ ڢnKj=}o(pF7" jčxaxpQx4#im`QCn4 ݩ Vi.R8 !7e p >ݚSK} D[G<?i@`wS}C\=3V%Ú?n|,%pwIȿvQv_@G{Y`%Mf8瓰Y$OxĦ@MTUM>-h׸Ļ2Uz$__RqJc @N}QK-}Ѽ"UGy,j@HL0"q-Ā #;uW&'/EX܉eY߅uG%r@5WqF{&PIpXX6l KtJ^aӟ{ѣox8~7J['akvh'|w~+4G= s]x55l}йvpw¦ H2SV+JathBSd: NpP!Tn]pζ;'0yxXФa1%j$hR  `\cŢona S4%R~⾶JnZ%_GOLhz} =Ghll”cc#!@t-fgeO<*Xf|E:~g~ 4xٲe2$'@#nE=8jx^6(.H2- ;F$za~[*l Js?LxOLGuU%AV/t g̰.uY>kO2LݴtW_}JiPo7f3LsS) Ugh[_ՄM{28~9NC'mXIBh[̶bF4XiDiX<# ֟= >lٿ/2g=!.@㏳WO.c5;sm0_-9C !C@ G[+Qb%aZEzx>#0 27G96-ڶWN$*ioZ|8VQ~ZwHaI^~%ZO#hjE ՅnV sT6v;50ռ@uJ4{L>yA&;9>E3CDX #9V$ %xv3!lOY^NI'M  os)?S"QTc%]yH*b:"H:ojFo<#xy\{p,`Cweݓyu%2%0GCl 4 Nyoxӿ8a{ QG)glA9i>;)' vp$r2-pmwn\ eGSb,Q 3مKN7sBgPb0Ǎ+{u01YØs_bPK.dc5QYN1>]<=AƓ0#ʆQ1. faXR`Fǂt_*&ñ|.3ʱq0k$oo>e2O}N tҎ+cE5x zE- h挙utO,aG8(-gYD @ Sߏ#\maT`۸(g8u6 :+s6i|#m.Ag0%5SNU .Ωwjs_PazL[Hq26]p;^C! ($Ik%|$" dXz~ٻ{s;+$oB jjOz# *M#w5;ϓ0cp2^#-jB}ecGC=Ts ',vQ,(_4cr˜Ё;팖ߴ#6 PyKn'( .ǽKcYC 7*q0ŹN]a^ҥ{ T 䆆(ZO- -~O1g#LsfVM>qBlX\D8XNPY#w!K25452QMsQ![hrקּ@ pO6κ>t4Kb|ÛCǍS0 .Bu GjW IȍԡsAe\}t-as~ !\-l[N6elܸ9D82?t}H"9KAtCz\¼c.g!*m*4AݼiKyVtRՙ^ <6T*+-exudT7-HwcIMcD86oj-T {,vm+E4}E;C )K6d_VBx⯠/@hwj25/I#ZyFe /v@ߏ=% S%>5>0jōvxž{u9nA\XGX$zUZX(uHI.p:Uaxω逥{ alC,t0$ކѡ.UB=I6FmG.D@th Gxc\8mK#LHjڣ)5E~.رF>UNZC(Dt(˅  }ezBgIɒP+$S}ޗw@rt)q؍fZ74fWԕ!+*|ةHaU4B"O7hC$L<<SHuJZo YCDi<ntustw:sڵmJ/мGCߩҋK,~ԦS7 !hze\}JH^{ ZѠsZG R?% 9B]Tfm8^[l !\ @w=)gc'$',2Np&EDʒk80mY|(v=re˖XyjC1|SKn^ir(8'7u2u+2+{өȆ'UX"JༀcB)o8!fV/fԍ~j6A?3l*fZ\T]C!zМ!\\t<mp] ;(+h5al"+kጴrE.X L ^[ـ$;| Ҡ^'7`&nK=u?=5yhSxu#,ѤluR52fҰ(3hB?ܿ91qhqc:)Yx3M,%3/LbJ` &)fC smnoKDNBC݀p]-=vNX+aT de 8>p{ R ;!cs[lshJuOCXl|-ҐLy9u9yr b| l>GxGI :^fqDjl MQ6Y/t^57 0p ~ \Fҩs1&-(wل,1$;Kod|L,>< Y3g~0kك?4b^q}f΋LR_H}s=@eSF8 54|j56Aq+e,y΋p ڒcX6 kL5\a%u}kz6̬j_Jc}+oXBnV ZZiX׆!]0rK g~o]Ѹ,~IR'ur뎀uje9]5BKϨmw[a}nEk`GZku@n ޷$6+F'^ |F vkXл\!.YlE - b#&|YZ%T:KקPBX#iNOYwo~E Œv.reI87Hрp A;e,\goN\Y[ya>t*=ayU-%Yh<%` +BR=9-~ϩGB@vsyyf<˒δW(˔: (s4,CSN5B}r57zA t'! ЮY4Ne A fIqU #  7:!h;#SzKc€L3o}98mqW|/L礖)- ilĭ;#ܲD$5C빠8P>6"cؠǼIjALR3a#ʞ|0f8ڵIpIѥKJZnXe2WOAE8N**nIeV}PR[88vIƈxfQ{Z@}FnXQNh6q6Ҽ+RyĎCW~IDAT,L _Jԡ4D4J'Uy Bg<d| CY Q|of$e8=p!o#6 7ER}B>Qk 8UkG-Kd:dmv;6N@X;Ọ)ڕ!W-Iu 6>cQyHHsŪ\4. 2wO+𶈊aÈj^ZRh.:'IGXl(&oa&k#ۺNne;]JʂǚGfA ߂ApYX+SPߝ[qA)Tp'9$ Tt{8o72Ih2iS+eA20mRC'NobdÑK&=GK̿e$ tex"GxN,.@϶2qhKkq”ͭCT<ʒC@^7FDUTrfB s0<T82 J"suIt ǵHE!bh$6Tle_ ~zͷI'VU"` A7@d}"P߳' 3Ō;9}Ek.2,Mq+,lZ{~QϜ=ggXRdmo `&졠ōC7\-.ԲNx|- zXF/!ϘCIE T_@išόoM+WXT.q@f1RSϱ? Z,ڀ wQ.$sa+m!:CX)d{.&lֹsgڱcg63\u˅"#uqwpaǍ/[6;Q?CsPn޴Fnf\cJyb*O؎=Gf~kD:->l!勸sAgA0 rPv{?@ .GB3ȵsVMW?6C]f|h8Fa0/EvѪp5ri,ӉYOMp'Eu/wgիV: dqpLG%M_-B/[(˖͛]Jߛ {څq쨻YXk2Eq 0sؽh5>}vwE-k? ɦ5֫Åf iZh9nK Q T佤U2^A< ٷ_aVE%Z ¼1CADA*&?G]SVYXC+IBbx'V%P>lRsOQYD߉=\z4=Fn;Ծ{=(>^Ÿ+>G%@"Li,#I;pcI$/WZvpYivsr,>8<';~܋\XV)XGsuDbTZ+BE~w $U$ w`}$WV7*V汓oA]k-X#D+l՚k޸vWn{<[jVž+X(ʓs_vkߧ]{ľw*q}t[Ыw#Q>(Ka !7ߓ@3&w =idGb1$4Z2Y:8 DyT%e=ӕ^CB$Q\&_Lx;1Kkjp3,,"CXH@p fU0c=pVd8AO.k -ގ;fd)-HËw^98nin}Cqo@84f39S8Z =%E򨱃vߋrWy:OBxƜ!m?x ;3$Z"(͂GùQ<5Z9;̽l`!&`p&.ʆ[`+nU`W}ȳH=ړZN^v55K>JgP묔Inz '2ӵ*U08ҀNFKsOd!$c#+Ž4|3g8ZڡC;`i:,xG`L>3Qh ?68MI79;yi<p {-ڝ|-bI/5A $ߘPL [iĂ$2&O/ǩ,A:D Yg=LwS]1f]-2(8b쎹VPZD IJnX{zvP>U maT=t9r*d(n)bWig̊&xոǿ$ܣz 'PP3k3Ab,W}+ktz vNc3Pmx641Z 3\]-昘Ry^xq{Pp7&9~7'45|-LW,h;P0|A!ۏwK(hdLq6 Y42Y]vYX̣iPH$e o!8,VgE.{r[ZöC  n䑌uhI|o{ !{|sl1*p#'vV[)qYp:B;bD̓I'R^~EnL0p  ԠV ilP.&4*ψCSc[DIZnE+Ѐ#fH ~R~ |O* fkueJ@޴`/MD؇hrѢᦾAm'Hr7(-m m,(9劗hnAQ{S7N;4\ ,P 4$Xm1fa5cN]m7M5UĩrDK)[ASB7 yp-9*C".8 -]M>{RiY5]*Lޭq,f^lul^7o`J!$U;?}=hߚy|{I~}k^xMYG9x4Q @ RK/@M $:e/.Mڸ܉ufC$#4wwBͫ vvQrU4{0,w#@]oxR}ئU޳z;׭hw!,8T}Z.'V?k~8Rh$0$o)Xeۭ'}pLB1& p EvH+ޱrAavTfF)ehqM 2e?4fGNKl~ d신7ЁW]BRT#wn{kvC x?&ATFnA*j78E[_RF/s+AA#x6NWO\1+,N7x᧞Z_)`;'MZfCD;XR`0p $TnB.LE#=0aqZcߠ70P%hM<&}ہcW0.aJ=Y$\!s5\f:X5o:< ؟!b XCk.mGe2qv[4)z]~x1)Дi:nv* O3P8 Xm|Ϙ@ouC>K2"܊|P8/^w>|pvޒc|Ű;b/-c`1ϒ1pBmCIVqhz[A'hYRK@ZYf=:<Ⱥp$! 3$mhYV[O 3W͙g$;uN1ƁL5V|La. `ܠ#Y,n4 3AkQjx!sꈏ k?&Dɢc3pbQME&Ʀy&1ma#p7mb-х)Ÿ6. |_>~(=~@s`dNWKIsaX~=Zrk } \.\89^`NXfp8dia&lv~xlj"۬?l׮`C_xI#&iZL1?\h *sd%<骡iSF!2tn5|YuGV1*1, \(g~h"c{Mrih-6W  7[| !4?q09;Z7n)?pmm\]06̘Ipc~S1h,4v6 JBϥ'pBUf]AA8Eh6x&'_B[uBZknFIJR[1(e]!5!m7MT) Ϻ`)kگ9 F ?C*AxYTUrh rH2gOUYdڵ}i}1- $9mBrH &K5$(ISzdoZ;oi%{~2 n/'47%m= F0-0 =B.2M"t1kmMZf0A;÷Y8HR2`mjJ\=/{b ߁ ⦢Ptto|< ȑ;1-M8v}|[m*S,y4 Bn]4 4Rk[.yVk]F@8DP"#7# Ȋ|+M#r1ر6c^2wӒX>,{/]wy y.Z(lxlpѣGn%O]N?_~b݆Z#Z_z_|z-."Xv\!m| =J>LQ N>d -,}'B!<+XMAkC3/cբO~N \FO6d4*vAd(ji}VG8m"1#hks>{V_IWv9(-!=,4<,2򎪲]3[qќ5 빡|=s7qH=M#)X9i {beh %'2<υ+fe|OT4~>n;4OѮX_7;g SGƄ<ڀxh2\óvͷ / Ӝ< YbOr7]0UClO*eނ[JJg4M7>ڻi1-`>:p9׺f,5lT-c[Wszp b&|NVjXgr8Ȥ=@5v $cf8\Tui3|׽>u#<UYO-*{fVOR#TFȕ։{K w  OQ}S`ZtҸ165|W)ҍKX4F0⩦ kD=(oq5̛GIl@F{KӘGV {EX`^ɸ=g܊88WE_sM`a-VZc?ě#u+cC(#T9W2CMIB2 "{t^(&/n;}^|#5- :α@z9U )C@B/a U:fxxla~h]O  ,4f+P'NUV't~yr~EViLU-#X Μ>;H h"|5ʍWީ!]# u\Y! |?=`,| ZkmJ㏲axшh4 [$kgdh\e lu C7Qm a JQ *1jJL(gF̡4t_::/;pT݀c+_[hFǔ@]nFrJa?^Üs#rsQƭXk3S& -A*%-ymCLͅ yct$%9KOh͇xX9Ÿ3npDM$OЂp(PC%8ӂbtWE }O%Gqo@rU{lkuz bC'zwE_>u#WKcnvGPoپA/1,4T%נ'&dD'! CkZAs c8وq8s\f($KD^&wy H/e98™Ci7|:{yyœTr=XaaI؞q@o)R9x"PrQ0}~Gf p|">S$ `ݢnVd΀z e6fVzeeÞzWvYJ*=ÛZش92Nf?׏PAPn.}'/ͥۿ|B?t+=+jdL{yrJF˾kF`U+.0ŢcFeA:HS0~e#NϨrW,1jSvp~ <@IlR׮]&On whIhN2HV $Rx,4xdd,K_t.2{H jXwA%2~1mr,ɩ3JyYA[G럒lqAz7o5@.<,0Ktz" {%H4(`AP&(+Ȣ hoԢ{1= í<'O暠Qׄ s.uC2_y8HZyNÐJCeKۦfVtvj.{=ssU%à2P׍:PD}a\ jPW˿:8ųBy)P1Ή_ 0=2 u ViW{ћgȎd3 A?)rޭhv} `dMtw5,(^Xc =$Ij˂fCX=_.ڹo {$>йn4 e۶nImʍ&{}lT΀x=D3#Yfwb2DSTZm!p%3  _UTm/g"֙3;A^gBĄ}֔`(21iuD[9lWvKLL]2nP} G{ϞV̅Lzw:)\Ql~>l|T<N_UV '-p8re(l16 ~ᚼˑX?^5999"c]²e ,ڗ9kO'{`78v5D@ۻljS f?w\`) *wC&fhEY9Q*$39F l;}ɧ^VLT664|?A2  _O+-;3k:wXBG0A$q"x,!?B %uze/g ~!e9,K..{앪snnT/_߶x1EY=NAZd%2tÕ#l.qCX= wFy*z 4P`1p`ndXcAN1wppya*o=5$ yjI9}sI{] %߻VH67j2ÚHPGu]2ٔ&;oܸ:Jʊ^?::lΙS^`0-Z#ʕL`r[]|S#y?%E*cw.["\Gvư&RWZ]wJ!pV+I09?L]uM]1aú>*wL|5O_\2[ǣ|4^ڲ nT$HK/,N~J1HVcG;M!Q_}ݍtH#ݼh'aIg$ e R0+V94BPIcQ 2tc'c' X>i9 x?0b,2aW6 Sd/S- ĥ"+VgZdH@t5i pٽˋ03 vƽt@W;+5QO35K?szs˖y܀G ^3H Y+3Io kLC̄i;]cG afp_\k)QzIk @X{TB!{<=z٦^w7Vkl5&U=ո>Uh/׈cQ.hTz!mt_ }/ ;h6Hۚ Ye+z?!3,e vP ߟϻ[Uҷڈ[q7Q-r1;5^` Ēy e*8ˌ5I5(!ȹ6I$4jz\ܳ۳5WsPpVD8~4{<Φ^Cmvξx?SڀavuDgӓ1_ݤZ_{n.NU/r]0A-9"q؂!iYbYj 4mU/Myw>˞DCBByAS1$rhBn4\3D(RTSm'ee6kҫ'|A[L[_4 x?8 Lm&"+RSjy'd%MLRp$܋'L=VP gB0KߖL&xU.|Z}]_=4T0ϭ4)MpM:} RC=:Q| .e0>VSwƲrC^^s.4a0㣢L+k!C60H,%'zYu Bo|@;qc I ls2&15waMn b\$!cO^0yXT*qNyfϾ)wE4Vr% ^wM6!X<{xQ&ぢFG*mլ^-(4ˆ1Âk>nmۚK+z5:zͽ'HG/h¾_<+H?%RAy'BYm#h.y8/֙Gb\{c{s& 9{oȎ/alXmd/m MԱ9,TB pMб!$Թ/"Nsə2*^G;h;ʅ}ͥF4[֮]/sBnwm*_~/%&&ҏv˞z١X[Mxw Khsސ֋/OiZ4ۛفxtƿCo#sZ8@ q*aeAZ=|s`_ S>cÚLb[Ss~0 }5<-% lժ믿:aH#1!:f3[q 5!f`Mjӥj }dRlDALOC4!Y ʃKk ~)0ht[~U٠~@ Z; @3Q~m3T bL1PD6fAxq c~s=psSw` <Hc 0*Bq-_uN+ۥˢ/,QR! j-iQ3m)̴52=ߘ%+DpcOZ/BKB9FLxFhN\e }>{RcʴrxeHP_pg2i9g^Q1`R) 糓'NOu%.FOq.b}xlj~X`T.Z"9 *B#-y3yqD$jnAn5oi̩O6웒oZ)BO;f+ BI/NnݧDqmd}OJ1,h ctJR3?,~ !Le]$O41.)X8[fB2MS %߰ޓx2a[-a¡|=NXBS.79qҋ~⦡}׬vV%2kf+er8aR`c٩w}g9 |v tr-[f8x l>Sl;(t/[nu`[p}nss pqJ׊Y<,?J S e d|b\ar7^͡"ēؑkҀ)c$Q&ܲꂧPr>>A˂6!>&|zӶX-[LS[)a;D/kVh\ sט'O;8v>?⊡5c|\J|aBV)`R?P+}xX7dn8޵?u+]|ۆAG?ڐ"4IOVOƅgd-T [Z\-BdC:>p=1dD?fn:q[]zŵ9͂p|}|hA]:Q;ƴ{=i{.1 mN#]0Év~gu»/{Z}l| /q`LE^qn5g23@h]q=\#bw*m* h!>J!X%L9bdO R"są@ dgؠX+mZ| ϓOXg屿ǴZxa.@BX/A;f8P%eA{/3#*j&q'lQ5z _wn7l"vh@ir.\̉ȯ}s\&U}0*8}zy?])UU"hi^w @ GE-bZe 0뒌/IH#hg,!YO[PjyHk{iAHۍ"j BO OJRxZs+'LY'=+I^\L pc7'o po2_ݦOJB]A-M)A[@2JJgHj:)X*}J1ss{;Aa7x<@b$y]bpppp1qHL9';Ilh9Q7i+,e^͇z9pޭo@c.b2u{ֈ@Bsɇ$d9B<< qTvC(/_}Ah71AfAX;Ar_nyXZ+O~ AÒKRdǷVIn߾Â~a Gvc>LUϏ>r"%b%9B҇ z^xxnN<38$3]{݄"(#a'+|̒`)`;6l0:$Õޗ O?lrt 0n\ _3ų;vx7mv+zFd-t-nu}%⪙>V W,_tɃs7C0v m2 AWxʅ!X&``5Q1a[64W\4J@yfsB`Ciǝ%"Ӗd'}W-z K'=: eXf>@pI3ݿ\3.+4 ׮Ysr4 גT}ٛo-2n!i)aC-7^Fy/j*/%~mn @F8K7^kBtx<)!rϝ=u/טǽA9s3$cdHqidҷ&ܹ=U+,qKra%u;X' X?pC{[ȉc;ўʿwSj: TZYvS*<ɩ-۷Yd-Ͼd+j1Д.޹wqp!&'{TdBF ױ9޻ڦ#!e{"!O0gqeB=Ao@Ӭ~JX{gOZ=({uf_WY_}9AEO[t~_vW6_ܗjD[ֺyLdiGЕ.~bqv5uu\9mr V3:#pyP M?ၿKq jE)E6Jl>4'Qg?(hh8yӄ !rM<'rƝ|rCgPI獾xX2|n"Y%-pH*QvxIܷf*_dΛi*A:K"c+>!oмƆ_m_07~[BY=Jo /?B@FEETaƠfsd+\0oxwacG?b,1>{v??\_@Hٰp`;}q({v`{s0L1 :jC6p>d|n~p{/;Y,#g[aFdVFڇS:3pJwi.E^h/~~o.%.n"NGzK#vGoiX!|m?er}t^SˡQ#M\.`$~,KB 꾻mE!uÍwp(,6mW?ߟO>HMiVS5 k{9kmkA?p.':pPWH`'{Vn,H0c (8 n Zxw2A#X,FusmQ<3BpOhVWZ5|_Z ĉS%ݤgK++a,Ԙ5t t fa6ujM c k a V2]ɓx]5]c,XX#ZW|%QHR4{#&Vɾ C෤TyIi;%bM JǕ#5zӃ0$#sw,hnXIЮnoZbRR h$e$ {QOD[SK%wX$2G9qչ@|FkS<}{f[lveKڼFW-+NzF,^14{}5ɸ!B.Z26j6ޕ N=3}j&-et=ݔ,ae]ke}Sx@Δ_[sq`EpBZG ݑ/i9.Afb+$GA=޵0Z\ iFW_Qܦ槄JmjVn!~ENpx2R+H>Stf )LJRߺ1 ўݻwy*ëqt ~']|Xg}׿!aP)b:`Ep\4:'"+%ڧտH=%KpB2xWտVM7MiN3{7A[l t؇onם0HEEέ>%c(2|$;:ȍ9-T8L ǂFt!FtyZ<ZK|2$BUZ@Tc W&( ^Y^ǾvjA?1!J0׬Qq4$WMvqZ<*=L㗰Pr1'|ބq) K#Ѓ^TEK~xh~Ƞ{0 <Jo3kd+(y=`bݵFTiH0E4_mݚm޴)%+iS%P7S\s1W\uA:hH'v6+]Kr-FSe]`?S 4w)& -Zo&q}!W.^Vcu5ka?!?l#@N=S~xi6d I#?} eT ᘇJH!49嗮SJ@-+ i}Sh Z ~ E :XB=3%-8ŎQ8nA[2lϟh/k?!l\54 \Ya\oUըs?cZj)D_օQc}]v\Çݻevtn搌{VP'f֯r~][ [B.S@ @V~f9:ȴeæ[YMYo Tre9 \4KdsgRelwy#4@c4п^v |yXח M![qM{ZeJc.6ʕ+=ɥK2Y koWO}FvH+a6ے)Ν3-ickf, u3z<3gP` NI.0 |5jg}t(3‡/+W3?nűAbADݘ4r,>̚5UC4&PכR?#P > ^W0NNQ*vQ3˗MʩnoWjJ Zjw2VWXa}ks,l|ɚߩJqHޫ38s56ݕXU3ɺ=y/uxEFq(wKXfno;)HU4g08$AL6=;wTjfM͟?Vy=JS5T7Ղ~c0%=!D.dgMGGG@\%ZDX LO[QC+cU1֠bIrYbrc\-N5:irZO;S) 8Lnݺ]6>.e CU,#L+ Wi}Sk{v撀*neO>=i  0(W'׍{zioR|eYZw^ٷƹC{~pWSm %󘑈-]Ԓ4'Mn]-(`Ho=3Q)ۿviH04j^:yu~,VK֕f/Z}\Vc=Vi^6k䐌C"|U#P zut<#:]X0J!! >_7Ÿj\àŏ6hrDwWٳ-u /(G*B_d֮ m1xԂ+8>+yh\#!{8 7;wnaM־G Y2x XE+[Hf6[)ePԙV>o\ bK왳ff3rتl$ Jk {njAn꿏8~f!ͮVV/@x"];~0Wsܹ |qX` ܷ{"JѬ /<& TJzi`{8 5kra>g޳_/3f4 z ˄])j|kmޤFF{G`$ͼh)&A~y{~ nmjȏsAkѴi|`bzHn~/Ǻi<tߗ֔}a-O̎mכC5 zx Q|.͈"!Ԃ~^s\#ў x$q5,sZ%)"]ʠt|4/Fm8GL0Z+Z[MF^=+UX7rԂ~ n'ehemnOMT麟#0eG/ASvX#P@={?^O(vIENDB`$$If!vh#v#vK#vC:V l t065yt7PT$$If!vh#v#vK#vC:V l t065yt7PT$$If!vh#v#vK#vC:V l t065yt7PT$$If!vh#v#vK#vC:V l t065yt7PT$$If!vh#v#vK#vC:V l t065yt7PT$$If!vh#v#vK#vC:V l t065yt7PT}$$If!vh#v/#v4:V l t065yt7PT}$$If!vh#v/#v4:V l t065yt7PTDd Tb  c $A? ?3"`?2`R  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^`abcdefghijklmnopqrstuvwxyz{|}~     ; <"#$%&'()*+,-./0123456789:Root Entry  FpЧ4 Data _rkWordDocument .ObjectPool x4pЧ4_1419420271Fx4x4Ole CompObjfObjInfo  !"#$%&') FMicrosoft Equation 3.0 DS Equation Equation.39q xjdai 9039Oh+'0$ 4@ ` l xEquation Native <1Table!2SummaryInformation( DocumentSummaryInformation8 W }ۆ<gj`!4RW }ۆv` :XJxcdd``$d@9`,&FF(`TI)YRcgbR 39aP5< %!  @_L ĺEv1X@3ȝATN`gbM-VK-WMc(P鱯az'3vq`\r%[pA]x `wLLJ% :,@: > A?f>Dd Tb  c $A? ?3"`?2`RW }ۆ<ij`!4RW }ۆv` :XJxcdd``$d@9`,&FF(`TI)YRcgbR 39aP5< %!  @_L ĺEv1X@3ȝATN`gbM-VK-WMc(P鱯az'3vq`\r%[pA]x `wLLJ% :,@: > A?f>PThe approach to teaching mathematics given the uniqueness of the Romany cultureSkolski Normal.dotmGoran4Microsoft Office Word@ @V{3@n{4 U՜.+,D՜.+, hp|  l3d PThe approach to teaching mathematics given the uniqueness of the Romany culturePThe approach to teaching mathematics given the uniqueness of the Romany culture NaslovTitle 8@ _PID_HLINKSA`*N Shttp://www.vlada.hr/hr/uredi/ured_za_nacionalne_manjine/nacionalni_program_za_romehttp://www.vlada.hr/ iRhttp://www.dzs.hr/Hrv/censuses/census2011/results/htm/H01_01_04/h01_01_04_RH.htmlv{http://www.dzs.hr/S jhttp://catalog.loc.gov/cgi-bin/Pwebrecon.cgi?SC=Author&SEQ=20031122031917&PID=5447&SA=Piaget,+Jean,+1896-P *http://bib.irb.hr/prikazi-rad?&rad=610072v{http://www.dzs.hr/^ 82 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmHnHsHtHN`N 7PNormal dCJPJ_HaJmHsHtH T@T 80Naslov 1$$dh@&a$5CJPJ\tH>A > Zadani font odlomkaVi@V Obi na tablica4 l4a .k . Bez popisa 4U`4 7P Hiperveza >*ph0W`0 7P Naglaaeno5\@o@ 80 Naslov 1 Char5CJ\aJxC@"x JYUvu eno tijelo teksta"$h\dh^h`\a$B*PJph3ftH^o1^ JYUvu eno tijelo teksta CharB*CJaJph3fZ@BZ JY Odlomak popisad^m$ PJmH sH PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V,cy$wc.bQKG7fK˵Riv4HN@!Fco#c (QR/L A]#Tv@=!<İT̟qu gDL--_FFGzѺU7q^۫ >Xju)lꝜg d֚/_ӹtLԀ~\vd9|:x9|Jk (b49C2lZ "/_䗟?Byߞ=yէ) ҘHt}a+d$G10-Sl& R*ToN1ˢ!hU{ƒHLps ;ZVIV 2n*]8MRyZ:w#⨹ppH~._w/cR%C:riFMc˴f;Y[EBU`V0ǍDḊǬXEUJ/zRAC8D*[-}CǪ ..R(zP漌iv@@@bU|!8Y;8>ܦ,AuLj;:5nFs[ ׸UqokބݫfO4EE@'ߢ5w7E|-yօAYfNc@M!-a 4A 64HpU ) uO3 e:(fQ!sHvy`Wr~(Bshgr%c VF5iP./L›0 ˫pעᰃ m(\ddH= R+sh;l2)^+Ikio ,A*k,GMg,Jd9\,AGm\nzi9~)D]9|%lڟZ̦gl冹EP9> ljWY DK/7e@E7:+k G7d<&*}gV'A} ש Tu洷+9gEW38Y+MC*t0O%Jݍq7ŔRN)z?ۇ@GbDž8t4~_`zd kH*6 r5gyCڧ!# B-;Y=ۻ,K12URWV9$l{=An;sVAP9zs:Y'[`ۇ@Pf7[6DY*@Xi+hee*skfDqbX,?*|fv u"xA@V_ .`p64+lt^7 t '5;Kb8s9x<ڮ-t5Dd8?Șe/Y|t &LILJ`DCPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 0_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!theme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] e,9Tetjʚ7;DGS[]8`````acef89:<=>?@ABCEFR\} MMMNNNYAZZAaaac=cHcKcccd9dFdJdddeX::XXXXXX8@f(  bB  c $D"?bB  c $D"?B S  ?JJe+ Jt8v8t !&PK"[#d#.&0&1&6&>&C&K&Q&Y&_&g&p&Y'['''****++1 2,373%454c4h4779999::[@c@BBBCCCEEE*E2E:ErEyEEEMM)X.X;XGXHXQXRX\X]XiXjXpXrXzXXXXXXXXXXXXXXXXXY YYY Y)Y,Y4Y5Y@YOYVYWY]YiYpY}YYYYYYYYYYYYYYYYYYYYYYBZGZHZIZJZVZXZcZdZhZiZqZrZyZzZZZZZZZZZZZZZZZ[[![4[:[;[C[D[G[H[O[P[W[Z[_[`[a[[[[[[[[[[[[[[[[[[[[\\"\#\%\&\0\1\<\=\F\G\R\U\\\^\e\f\l\\\\\\\]]!]"]#]+]7]?]@]G]H]V]W]c]d]n]o]v]w]|]}]]]]]]]]]]]]]]]]]]]]]]]]]]]]^ ^ ^^^^^^ ^)^*^2^4^<^=^F^P^V^c^i^j^k^l^q^r^{^^^^^^^^^^^^^^^^^____"_(_)_*_+_6_8_@_a_i_v_|_}_______________________`` `````(`.`=`C`H`I`J`W`d`i`o`u`{`````````````````````aaaaaaaa%a/a5aabb$b1b5b6b9b:bDbEbJbLbUbVbbbbbbbbbbbbbbbbbbbbbccc ccccc dde0 d  &&((44CCKIUIpIzIIIKK KKHKIKhKKK L-L\LfLxM{MMMENHNNNNNNNHQRQYYW[Y[[[````aac dd ee333333333333333333333333333333333333&&&&&&&&e&&&&&&&&eJ[wPƴF~Nzjh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hH^`56.^`.pL^p`L.@ ^@ `.^`.L^`L.^`.^`.PL^P`L.J[wF~F_X8JYk|`7P?ee@YYYY "#$&'78:;Y@YABC2E2F2J2K2M2N0R)X)Y)Z)[)^_e@0@ D@$L@*X@24l@8t@J@N@V@Z@^@d@h@ @UnknownG*Ax Times New Roman5Symbol3. *Cx Arial7.@Calibri?= *Cx Courier New;WingdingsA$BCambria Math"1|G|GU 3U 3!24dd3QHP ?7P2!xx OThe approach to teaching mathematics given the uniqueness of the Romany cultureSkolskiGoran  CompObj(}  F+Dokument programa Microsoft Word 97 2003 MSWordDocWord.Document.89q