Pregled bibliografske jedinice broj: 626295
Nonautonomous differential equations in Banach space and nonrectifiable attractivity in two- dimensional linear differential systems
Nonautonomous differential equations in Banach space and nonrectifiable attractivity in two- dimensional linear differential systems // Abstract and applied analysis, 2013 (2013), 935089-1 doi:10.1155/2013/935089 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 626295 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Nonautonomous differential equations in Banach space and nonrectifiable attractivity in two- dimensional linear differential systems
Autori
Miličić, Siniša ; Pašić, Mervan
Izvornik
Abstract and applied analysis (1085-3375) 2013
(2013);
935089-1
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
linear differential systems; nonautonomous; attractivity; rectifiability
Sažetak
We study the asymptotic behaviour near $t=0$ of all solutions $\mathbf{; ; ; x}; ; ; \in C^1((0, t_0] ; \mathbb{; ; ; X}; ; ; )$ of linear nonautonomous differential equation $(1.1)$: $\mathbf{; ; ; x}; ; ; '=A(t)\mathbf{; ; ; x}; ; ; $, $t\in (0, t_0]$, where $\mathbb{; ; ; X}; ; ; $ is an arbitrary Banach space and $A\colon(0, t_0]\to L(\mathbb{; ; ; X}; ; ; )$ is an operator-valued function which may be singular at $t=0$. In terms of asymptotic behaviour of the operator norm $\|A(t)\|$ near $t=0$, we characterize a kind of singular behaviour near $t=0$ of all solutions $x(t)$ of equation $(1.1)$ by the nonintegrability of $\|\mathbf{; ; ; x}; ; ; '\|_{; ; ; \mathbb{; ; ; X}; ; ; }; ; ; $ on the interval $(0, t_0]$. Next, according to previous results in particular when $\mathbb{; ; ; X}; ; ; =\mathbb{; ; ; R}; ; ; ^2$ and $(1.1)$ is a linear integrable system, we study the so-called nonrectifiable attractivity of the zero solution of $(1.1)$ as a geometric kind of singular behaviour of all solutions of $(1.1)$ near $t=0$: under some sufficient conditions, the convergence to zero of $\|\mathbf{; ; ; x}; ; ; \|_{; ; ; \mathbb{; ; ; X}; ; ; }; ; ; $ as $t$ goes to $0$ as well as the infiniteness of length of corresponding solution curve of $x(t)$ are characterized in terms of singular behaviours of matrix-elements of $A(t)$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Temeljne tehničke znanosti
POVEZANOST RADA
Projekti:
036-0361621-1291 - Nelinearna analiza diferencijalnih jednadžbi i dinamičkih sustava (Pašić, Mervan, MZO ) ( CroRIS)
036-0361621-3012 - Napredne strategije upravljanja i estimacije u složenim sustavima (Perić, Nedjeljko, MZO ) ( CroRIS)
036-1170889-1054 - Ocjene suma, integrala i integralnih transformacija (Elezović, Neven, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Zentrallblatt für Mathematik/Mathematical Abstracts
- Academic Search Complete
- Academic Search Research and Development
- CSA Illustrata - Natural Sciences
- CSA Illustrata - Technology
- CSA Technology Research Database
- Current Abstracts
- Current Contents/Physical, Chemical and Earth Sciences
- Current Index to Statistics (CIS)
- Directory of Open Access Journals (DOAJ)
- EBSCO Discovery Service