Pregled bibliografske jedinice broj: 625909
Adaptive Estimation of Difficult-to-Measure Process Variables
Adaptive Estimation of Difficult-to-Measure Process Variables // Automatika : časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 54 (2013), 2; 166-177 doi:10.7305/automatika.54-2.147 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 625909 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Adaptive Estimation of Difficult-to-Measure Process Variables
Autori
Slišković, Dražen ; Grbić, Ratko ; Hocenski, Željko
Izvornik
Automatika : časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije (0005-1144) 54
(2013), 2;
166-177
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Process variable estimation; Adaptive estimator; Moving window; Recursive algorithms; JITL algorithm
Sažetak
There exist many problems regarding process control in the process industry since some of the important variables cannot be measured online. This problem can be significantly solved by estimating these difficult-to-measure process variables. In doing so, the estimator is in fact an appropriate mathematical model of the process which, based on information about easy-to-measure process variables, estimates the current value of the difficult-to-measure variable. Since processes are usually time-varying, the precision of the estimation based on the process model which is built on old data is decreasing over time. To avoid estimator accuracy degradation, model parameters should be continuously updated in order to track process behavior. There are a couple of methods available for updating model parameters depending on the type of process model. In this paper, PLSR process model is chosen as the basis of the difficult-to-measure process variable estimator while its parameters are updated in several ways – by the moving window method, recursive NIPALS algorithm, recursive kernel algorithm and Just-in-Time learning algorithm. Properties of these adaptive methods are explored on a simulated example. Additionally, the methods are analyzed in terms of computational load and memory requirements.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Projekti:
165-0361621-2000 - Distribuirano računalno upravljanje u transportu i industrijskim pogonima (Hocenski, Željko, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- INSPEC
- SCOPUS
- EBSCO