Pregled bibliografske jedinice broj: 625243
Load forecasting using a multivariate meta-learning system
Load forecasting using a multivariate meta-learning system // Expert systems with applications, 40 (2013), 11; 4427-4437 doi:10.1016/j.eswa.2013.01.047 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 625243 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Load forecasting using a multivariate meta-learning system
Autori
Matijaš, Marin ; Suykens, Johan A.K. ; Krajcar, Slavko
Izvornik
Expert systems with applications (0957-4174) 40
(2013), 11;
4427-4437
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
electricity consumption prediction; energy expert systems; industrial applications; short-term electric load forecasting; meta-learning; power demand estimation
Sažetak
Although over a thousand scientific papers address the topic of load forecasting every year, only a few are dedicated to finding a general framework for load forecasting that improves the performance, without depending on the unique characteristics of a certain task such as geographical location. Meta-learning, a powerful approach for algorithm selection has so far been demonstrated only on univariate time-series forecasting. Multivariate time-series forecasting is known to have better performance in load forecasting. In this paper we propose a meta- learning system for multivariate time-series forecasting as a general framework for load forecasting model selection. We show that a meta- learning system built on 65 load forecasting tasks returns lower forecasting error than 10 well-known forecasting algorithms on 4 load forecasting tasks for a recurrent real-life simulation. We introduce new metafeatures of fickleness, traversity, granularity and highest ACF. The meta-learning framework is parallelized, component-based and easily extendable.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
036-0361590-1591 - Razvoj alata za analizu tržišta električne energije (Krajcar, Slavko, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Cambridge/Computer and Information Abstracts
- Research Alert
- SCISEARCH
- Scopus