Pregled bibliografske jedinice broj: 623163
Continuous estimation of kerosene cold filter plugging point using soft sensors
Continuous estimation of kerosene cold filter plugging point using soft sensors // Fuel processing technology, 113 (2013), 8-19 doi:10.1016/j.fuproc.2013.03.007 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 623163 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Continuous estimation of kerosene cold filter plugging point using soft sensors
Autori
Novak, Mirjana ; Mohler, Ivan ; Golob, Marjan ; Ujević Andrijić, Željka ; Bolf, Nenad
Izvornik
Fuel processing technology (0378-3820) 113
(2013);
8-19
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
soft sensor; neural fuzzy model; model identification methods; crude distillation unit; cold filter plugging point
Sažetak
Due to growing fuel quality demands, continuous measurements of process variables and product quality properties in the crude distillation unit (CDU) are necessary. One of the key diesel fuel properties is kerosene cold filter plugging point (CFPP). CFPP is usually determined only by laboratory assays. On the basis of available continuous measurements of temperatures and flows of appropriate process streams, soft sensor models for the estimation of kerosene CFPP have been developed. Data preprocessing includes: detection and outlier removal, generating additional output data by Multivariate Adaptive Regression Splines (MARSplines) algorithm, detrending data and filtering data. Soft sensors are developed using linear and nonlinear identification methods. Model structures are optimized by Genetic Algorithm (GA) and ANFIS (Adaptive Neuro-Fuzzy Inference System) algorithm. Results of the Output Error (OE) model, Hammerstein–Wiener (HW) model and neuro-fuzzy model are shown. Developed models were evaluated based on the final prediction error (FPE), root mean square error (RMSE), mean absolute error (AE) and FIT values. The best results are achieved with neuro-fuzzy model.
Izvorni jezik
Engleski
Znanstvena područja
Kemijsko inženjerstvo
POVEZANOST RADA
Projekti:
125-1251963-1964 - Softverski senzori i analizatori za motrenje i vođenje procesa (Bolf, Nenad, MZOS ) ( CroRIS)
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb
Profili:
Željka Ujević Andrijić
(autor)
Mirjana Novak Stankov
(autor)
Nenad Bolf
(autor)
Ivan Mohler
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Fluidex (Fluid Engineering Abstracts)
- Geobase
- AESIS
- APILIT
- Cambridge Scientific Abstracts
- EI Compendex Plus
- Ei Engineering
- Energy Science and Technology
- Environmental Periodicals Bibliography
- Fuel and Energy Abstracts
- PASCAL/CNRS
- Scisearch
- Scopus