Pregled bibliografske jedinice broj: 617685
Surfaces of Constant Curvature in the Pseudo-Galilean Space
Surfaces of Constant Curvature in the Pseudo-Galilean Space // International journal of mathematics and mathematical sciences, 2012 (2012), 1-28 doi:10.1155/2012/375264 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 617685 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Surfaces of Constant Curvature in the Pseudo-Galilean Space
Autori
Milin-Šipuš, Željka ; Divjak, Blaženka
Izvornik
International journal of mathematics and mathematical sciences (0161-1712) 2012
(2012);
1-28
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
pseudo-Galilean space ; Galilean space ; Gaussian curvature ; surface of constant curvature ; Klein-Gordon equation
Sažetak
We develop the local theory of surfaces immersed in the pseudo-Galilean space, a special type of Cayley-Klein spaces. We define principal, Gaussian, and mean curvatures. By this, the general setting for study of surfaces of constant curvature in the pseudo-Galilean space is provided. We describe surfaces of revolution of constant curvature. We introduce special local coordinates for surfaces of constant curvature, so-called the Tchebyshev coordinates, and show that the angle between parametric curves satisfies the Klein-Gordon partial differential equation. We determine the Tchebyshev coordinates for surfaces of revolution and construct a surface with constant curvature from a particular solution of the Klein-Gordon equation.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
016-0372785-0892 - Diferencijalna geometrija prostora s degeneriranim i indefinitnim metrikama (Divjak, Blaženka, MZOS ) ( CroRIS)
Ustanove:
Fakultet organizacije i informatike, Varaždin
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Scopus