Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 617045

Topologically finitely generated Hilbert C(X)-modules


Gogić, Ilja
Topologically finitely generated Hilbert C(X)-modules // Journal of mathematical analysis and applications, 395 (2012), 2; 559-568 doi:10.1016/j.jmaa.2012.05.050 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 617045 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Topologically finitely generated Hilbert C(X)-modules

Autori
Gogić, Ilja

Izvornik
Journal of mathematical analysis and applications (0022-247X) 395 (2012), 2; 559-568

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Hilbert C(X)-module ; (F) Hilbert bundle ; Subhomogeneous ; Finite type property ; C(X)-projective tensor product

Sažetak
For a Hilbert $C(X)$-module $V$, where $X$ is a compact metrizable space, we show that the following conditions are equivalent: (i) $V$ is topologically finitely generated, (ii) there exists $K \in \N$ such that every algebraically finitely generated submodule of $V$ can be generated with $k \leq K$ generators, (iii) $V$ is canonically isomorphic to the Hilbert $C(X)$-module $\Gamma(\mathcal{; ; ; E}; ; ; )$ of all continuous sections of an (F) Hilbert bundle $\mathcal{; ; ; E}; ; ; =(p, E, X)$ over $X$, whose fibres $E_x$ have uniformly finite dimensions, and each restriction bundle of $\mathcal{; ; ; E}; ; ; $ over a set where $\dim E_x$ is constant is of finite type, (iv) there exists $N \in \N$ such that for every Banach $C(X)$-module $W$, each tensor in the $C(X)$-projective tensor product $V \po_{; ; ; C(X)}; ; ; W$ is of (finite) rank at most $N$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
MZOS-037-0372784-2753 - Hilbertovi C*-moduli (Guljaš, Boris, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Ilja Gogić (autor)

Citiraj ovu publikaciju:

Gogić, Ilja
Topologically finitely generated Hilbert C(X)-modules // Journal of mathematical analysis and applications, 395 (2012), 2; 559-568 doi:10.1016/j.jmaa.2012.05.050 (međunarodna recenzija, članak, znanstveni)
Gogić, I. (2012) Topologically finitely generated Hilbert C(X)-modules. Journal of mathematical analysis and applications, 395 (2), 559-568 doi:10.1016/j.jmaa.2012.05.050.
@article{article, author = {Gogi\'{c}, Ilja}, year = {2012}, pages = {559-568}, DOI = {10.1016/j.jmaa.2012.05.050}, keywords = {Hilbert C(X)-module, (F) Hilbert bundle, Subhomogeneous, Finite type property, C(X)-projective tensor product}, journal = {Journal of mathematical analysis and applications}, doi = {10.1016/j.jmaa.2012.05.050}, volume = {395}, number = {2}, issn = {0022-247X}, title = {Topologically finitely generated Hilbert C(X)-modules}, keyword = {Hilbert C(X)-module, (F) Hilbert bundle, Subhomogeneous, Finite type property, C(X)-projective tensor product} }
@article{article, author = {Gogi\'{c}, Ilja}, year = {2012}, pages = {559-568}, DOI = {10.1016/j.jmaa.2012.05.050}, keywords = {Hilbert C(X)-module, (F) Hilbert bundle, Subhomogeneous, Finite type property, C(X)-projective tensor product}, journal = {Journal of mathematical analysis and applications}, doi = {10.1016/j.jmaa.2012.05.050}, volume = {395}, number = {2}, issn = {0022-247X}, title = {Topologically finitely generated Hilbert C(X)-modules}, keyword = {Hilbert C(X)-module, (F) Hilbert bundle, Subhomogeneous, Finite type property, C(X)-projective tensor product} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font