Pregled bibliografske jedinice broj: 617045
Topologically finitely generated Hilbert C(X)-modules
Topologically finitely generated Hilbert C(X)-modules // Journal of mathematical analysis and applications, 395 (2012), 2; 559-568 doi:10.1016/j.jmaa.2012.05.050 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 617045 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Topologically finitely generated Hilbert C(X)-modules
Autori
Gogić, Ilja
Izvornik
Journal of mathematical analysis and applications (0022-247X) 395
(2012), 2;
559-568
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Hilbert C(X)-module ; (F) Hilbert bundle ; Subhomogeneous ; Finite type property ; C(X)-projective tensor product
Sažetak
For a Hilbert $C(X)$-module $V$, where $X$ is a compact metrizable space, we show that the following conditions are equivalent: (i) $V$ is topologically finitely generated, (ii) there exists $K \in \N$ such that every algebraically finitely generated submodule of $V$ can be generated with $k \leq K$ generators, (iii) $V$ is canonically isomorphic to the Hilbert $C(X)$-module $\Gamma(\mathcal{; ; ; E}; ; ; )$ of all continuous sections of an (F) Hilbert bundle $\mathcal{; ; ; E}; ; ; =(p, E, X)$ over $X$, whose fibres $E_x$ have uniformly finite dimensions, and each restriction bundle of $\mathcal{; ; ; E}; ; ; $ over a set where $\dim E_x$ is constant is of finite type, (iv) there exists $N \in \N$ such that for every Banach $C(X)$-module $W$, each tensor in the $C(X)$-projective tensor product $V \po_{; ; ; C(X)}; ; ; W$ is of (finite) rank at most $N$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZOS-037-0372784-2753 - Hilbertovi C*-moduli (Guljaš, Boris, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Ilja Gogić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts