Pregled bibliografske jedinice broj: 614923
Adaptive Soft Sensor for Online Prediction Based on Moving Window Gaussian Process Regression
Adaptive Soft Sensor for Online Prediction Based on Moving Window Gaussian Process Regression // Special Session VI: Adaptive and Dynamic Modeling in Non-stationary Environments
Boca Raton (FL), Sjedinjene Američke Države, 2012. str. 428-433 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 614923 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Adaptive Soft Sensor for Online Prediction Based on Moving Window Gaussian Process Regression
Autori
Grbić, Ratko ; Slišković, Dražen ; Kadlec, Petr
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Special Session VI: Adaptive and Dynamic Modeling in Non-stationary Environments
/ - , 2012, 428-433
ISBN
978-0-7695-4913-2
Skup
11th International Conference on Machine Learning and Applications (ICMLA 2012)
Mjesto i datum
Boca Raton (FL), Sjedinjene Američke Države, 12.12.2012. - 15.12.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
process modeling; online prediction; Mutual Information; adaptive soft sensor; Gaussian Process Regression
Sažetak
Very often important process variables cannot be measured online due to low sampling rate of sensors or because their values have to be obtained by laboratory analysis. In order to enable continuous process monitoring and efficient process control in such cases, soft sensors are usually used to estimate these difficult-to- measure process variables. Most industrial processes exhibit some kind of time-varying behavior. To ensure that soft sensor retains its precision, adaptation mechanism has to be implemented. In this paper adaptive soft sensor based on Gaussian Process Regression (GPR) is presented. To make GPR model training more efficient, algorithm for variable selection based on Mutual Information is proposed. Prediction capabilities of the proposed method are examined on real industrial data obtained at an oil distillation column.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Temeljne tehničke znanosti
POVEZANOST RADA
Projekti:
165-0361621-2000 - Distribuirano računalno upravljanje u transportu i industrijskim pogonima (Hocenski, Željko, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek