Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 612629

Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images


Hengl, Tomislav; Heuvelink, Gerard B.M.; Perčec Tadić, Melita; Pebesma, Edzer
Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images // Proceedings of geoENV2012 / Gomez-Hernandez, J.J. (ur.).
Valencia: Universitat Politecnica de Valencia, 2012. (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 612629 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

Autori
Hengl, Tomislav ; Heuvelink, Gerard B.M. ; Perčec Tadić, Melita ; Pebesma, Edzer

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Proceedings of geoENV2012 / Gomez-Hernandez, J.J. - Valencia : Universitat Politecnica de Valencia, 2012

ISBN
978-84-8363-923-8

Skup
IX Conference on Geostatistics for Environmental Applications: geoENV 2012

Mjesto i datum
Valencia, Španjolska, 19.09.2012. - 21.09.2012

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Land surface temperature; Regression-kriging; Space-time variogram; MODIS; Noise filtering; Principal component analysis

Sažetak
A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution ; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57, 282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation ; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C) ; however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10–fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval, resampling and filtering of MODIS images—are anticipated.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Geologija



POVEZANOST RADA


Projekti:
004-1193086-3035 - Klimatske varijacije i promjene i odjek u područjima utjecaja (Gajić-Čapka, Marjana, MZOS ) ( CroRIS)

Ustanove:
Državni hidrometeorološki zavod

Profili:

Avatar Url Tomislav Hengl (autor)

Avatar Url Melita Perčec Tadić (autor)

Citiraj ovu publikaciju:

Hengl, Tomislav; Heuvelink, Gerard B.M.; Perčec Tadić, Melita; Pebesma, Edzer
Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images // Proceedings of geoENV2012 / Gomez-Hernandez, J.J. (ur.).
Valencia: Universitat Politecnica de Valencia, 2012. (predavanje, međunarodna recenzija, sažetak, znanstveni)
Hengl, T., Heuvelink, G., Perčec Tadić, M. & Pebesma, E. (2012) Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. U: Gomez-Hernandez, J. (ur.)Proceedings of geoENV2012.
@article{article, author = {Hengl, Tomislav and Heuvelink, Gerard B.M. and Per\v{c}ec Tadi\'{c}, Melita and Pebesma, Edzer}, editor = {Gomez-Hernandez, J.}, year = {2012}, keywords = {Land surface temperature, Regression-kriging, Space-time variogram, MODIS, Noise filtering, Principal component analysis}, isbn = {978-84-8363-923-8}, title = {Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images}, keyword = {Land surface temperature, Regression-kriging, Space-time variogram, MODIS, Noise filtering, Principal component analysis}, publisher = {Universitat Politecnica de Valencia}, publisherplace = {Valencia, \v{S}panjolska} }
@article{article, author = {Hengl, Tomislav and Heuvelink, Gerard B.M. and Per\v{c}ec Tadi\'{c}, Melita and Pebesma, Edzer}, editor = {Gomez-Hernandez, J.}, year = {2012}, keywords = {Land surface temperature, Regression-kriging, Space-time variogram, MODIS, Noise filtering, Principal component analysis}, isbn = {978-84-8363-923-8}, title = {Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images}, keyword = {Land surface temperature, Regression-kriging, Space-time variogram, MODIS, Noise filtering, Principal component analysis}, publisher = {Universitat Politecnica de Valencia}, publisherplace = {Valencia, \v{S}panjolska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font