Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 601488

Regression analysis and neural networks as methods for production time estimation


Ćosić, Predrag; Lisjak, Dragutin; Antolić, Dražen
Regression analysis and neural networks as methods for production time estimation // Tehnički vjesnik, 18 (2011), 4; 479-484 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 601488 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Regression analysis and neural networks as methods for production time estimation

Autori
Ćosić, Predrag ; Lisjak, Dragutin ; Antolić, Dražen

Izvornik
Tehnički vjesnik (1330-3651) 18 (2011), 4; 479-484

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
group technology; knowledge base; neural networks; production time; stepwise multiple linear regression; Total Cost Estimation

Sažetak
An experienced process planner usually makes decisions based on comprehensive data without breaking it down into individual parameters. So, as the first phase it was necessary to establish a technological knowledge base, define features of the 2D drawing (independent variables), possible dependent variables, size and criteria for sample homogenization (principles of group technology) for carrying out analysis of variance and regression analysis. The second phase in the research was to investigate the possibility for easy automatic, direct finding and applying 3D features of an axial symmetric product to the regression model. The third phase in the research was to investigate the possibility for the application of neural networks in production time estimation and to compare the 224 results between the regression models and neural network models. The most important characteristic of our approach presented in this paper is estimation of production times using group technology, regression analysis and neural networks.

Izvorni jezik
Hrvatski, engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Projekti:
120-1201780-1779 - Modeliranje svojstava materijala i parametara procesa (Filetin, Tomislav, MZOS ) ( CroRIS)

Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Dragutin Lisjak (autor)

Avatar Url Dražen Antolić (autor)

Poveznice na cjeloviti tekst rada:

Hrčak

Citiraj ovu publikaciju:

Ćosić, Predrag; Lisjak, Dragutin; Antolić, Dražen
Regression analysis and neural networks as methods for production time estimation // Tehnički vjesnik, 18 (2011), 4; 479-484 (međunarodna recenzija, članak, znanstveni)
Ćosić, P., Lisjak, D. & Antolić, D. (2011) Regression analysis and neural networks as methods for production time estimation. Tehnički vjesnik, 18 (4), 479-484.
@article{article, author = {\'{C}osi\'{c}, Predrag and Lisjak, Dragutin and Antoli\'{c}, Dra\v{z}en}, year = {2011}, pages = {479-484}, keywords = {group technology, knowledge base, neural networks, production time, stepwise multiple linear regression, Total Cost Estimation}, journal = {Tehni\v{c}ki vjesnik}, volume = {18}, number = {4}, issn = {1330-3651}, title = {Regression analysis and neural networks as methods for production time estimation}, keyword = {group technology, knowledge base, neural networks, production time, stepwise multiple linear regression, Total Cost Estimation} }
@article{article, author = {\'{C}osi\'{c}, Predrag and Lisjak, Dragutin and Antoli\'{c}, Dra\v{z}en}, year = {2011}, pages = {479-484}, keywords = {group technology, knowledge base, neural networks, production time, stepwise multiple linear regression, Total Cost Estimation}, journal = {Tehni\v{c}ki vjesnik}, volume = {18}, number = {4}, issn = {1330-3651}, title = {Regression analysis and neural networks as methods for production time estimation}, keyword = {group technology, knowledge base, neural networks, production time, stepwise multiple linear regression, Total Cost Estimation} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font