Pregled bibliografske jedinice broj: 596753
Predicting student performance using decision trees
Predicting student performance using decision trees // Proceedings of the IBC 2012 Internet & Business Conference / Ivkovic, Miodrag ; Šimičević. Vanja ; Pejić Bach, Mirjana (ur.).
Zagreb: BIT udruga, 2012. str. 186-191 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 596753 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Predicting student performance using decision trees
Autori
Dragičević, Mladen ; Pejić Bach, Mirjana ; Šimičević, Vanja
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the IBC 2012 Internet & Business Conference
/ Ivkovic, Miodrag ; Šimičević. Vanja ; Pejić Bach, Mirjana - Zagreb : BIT udruga, 2012, 186-191
Skup
IBC 2012 Internet & Business Conference
Mjesto i datum
Rovinj, Hrvatska, 27.06.2012. - 28.06.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
knowledge discovery in databases ; data mining ; student success ; prediction models ; evaluation of models ; classification
Sažetak
The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out on the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for usage in decision support systems.
Izvorni jezik
Engleski
Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
067-1521781-2485 - Inteligentni sustavi kontrolinga, financija i računovodstva digitalnog poduzeća (Peić-Bach, Mirjana, MZOS ) ( CroRIS)
Ustanove:
Ekonomski fakultet, Zagreb,
Fakultet hrvatskih studija, Zagreb