Pregled bibliografske jedinice broj: 593432
DAE Index 1 Formulation for Multibody System Dynamics in Lie-Group Setting
DAE Index 1 Formulation for Multibody System Dynamics in Lie-Group Setting // In 2nd Joint International Conference on Multibody System Dynamics / Goetz, Heidi-Maria ; Ziegler, Pascal (ur.).
Stuttgart: University of Stuttgart, Institute of Engineering and Computational Mechanics, 2012. str. 380-381 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 593432 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
DAE Index 1 Formulation for Multibody System Dynamics in Lie-Group Setting
Autori
Terze, Zdravko ; Mueller, Andreas ; Zlatar, Dario
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
In 2nd Joint International Conference on Multibody System Dynamics
/ Goetz, Heidi-Maria ; Ziegler, Pascal - Stuttgart : University of Stuttgart, Institute of Engineering and Computational Mechanics, 2012, 380-381
ISBN
978-3-927618-32-9
Skup
The 2nd Joint International Conference on Multibody System Dynamics
Mjesto i datum
Stuttgart, Njemačka, 29.05.2012. - 01.06.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Lie-groups; Multibody Systems Dynamics; Numerical Integration Methods; DAE systems; Constraint Violation Stabilization; Manifolds; Munthe-Kaas method
Sažetak
A Lie-group integration method for constrained multibody systems is proposed in the paper and applied for numerical simulation of a satellite dynamics. Mathematical model of multibody system dynamics is shaped as DAE system of equations of index 1, while dynamics is evolving on Lie-group introduced as system ‘state-space formulation’. The basis of the method is Munthe-Kaas algorithm for ODE on Liegroups, which is re-formulated and expanded to be applicable for the integration of constrained multibody dynamics in DAE index 1 form. The constraint violation stabilization algorithm at the generalized position and velocity level is introduced by using two different algorithms: a first one that operates directly on the ‘state-space’ manifold and, a second one, that uses Cartesian rotation vectors as local coordinates for the generalized positions. A numerical example of ‘dual-spin’ satellite that demonstrates the proposed integration procedure is described and discussed at the end of the paper.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Strojarstvo, Zrakoplovstvo, raketna i svemirska tehnika
POVEZANOST RADA
Projekti:
120-1201829-1664 - Numeričke simulacijske procedure dinamike slijetanja elastičnog zrakoplova (Terze, Zdravko, MZOS ) ( CroRIS)
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb