Pregled bibliografske jedinice broj: 593066
Velocity averaging - a general framework
Velocity averaging - a general framework // Topis in PDE, Microlocal and Time-frequency Analysis (PDEMTA2012) : Book of Abstracts
Novi Sad: Department of Mathematics and Informatics, University of Novi Sad, 2012. str. 23-23 (predavanje, nije recenziran, sažetak, ostalo)
CROSBI ID: 593066 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Velocity averaging - a general framework
Autori
Lazar, Martin ; Mitrović, Darko
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, ostalo
Izvornik
Topis in PDE, Microlocal and Time-frequency Analysis (PDEMTA2012) : Book of Abstracts
/ - Novi Sad : Department of Mathematics and Informatics, University of Novi Sad, 2012, 23-23
Skup
Topis in PDE, Microlocal and Time-frequency Analysis
Mjesto i datum
Novi Sad, Srbija, 03.09.2012. - 08.09.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
velocity averaging; generalised H-measures; ultraparabolic equations; discontinuous coefficients
Sažetak
We establish the strong $\Ldl\Rd$ precompactness of the sequence of averaged quantities $\int_{; ; \R^m}; ; u_n(\mx, \msnop)$ $\rho(\msnop)d\msnop$, where $\rho\in \Ldc{; ; \R^m}; ; $ , and $u_n\in \Ld{; ; \R^m ; \pL s\Rd}; ; $, $s\geq 2$, are weak solutions to differential operator equations with variable coefficients. In particular, this includes differential operators of hyperbolic, parabolic or ultraparabolic type, but also fractional differential operators. If $s>2$ then the coefficients can be discontinuous with respect to the space variable $\mx\in \R^d$. The main tool in the work is an extension of the H-measures, for which a representation theorem is proved. An application is give n to ultraparabolic equations with discontinuous coefficients.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-1193086-3226 - Matematičko modeliranje geofizičkih pojava (Vrdoljak, Marko, MZOS ) ( CroRIS)
Ustanove:
Sveučilište u Dubrovniku