Pregled bibliografske jedinice broj: 59278
A Study of the Surface Share Stress in Saint-Venants Torsion by the Boundary Element Method
A Study of the Surface Share Stress in Saint-Venants Torsion by the Boundary Element Method // Proceedings of the 6th International Design Conference - DESIGN 2000 / Marjanović, D (ur.).
Zagreb: Centar za transfer tehnologije (CTT) ; Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, 2000. str. 547-552 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 59278 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Study of the Surface Share Stress in Saint-Venants Torsion by the Boundary Element Method
Autori
Obsieger, Boris
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 6th International Design Conference - DESIGN 2000
/ Marjanović, D - Zagreb : Centar za transfer tehnologije (CTT) ; Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, 2000, 547-552
Skup
International Design Conference - DESIGN 2000
Mjesto i datum
Dubrovnik, Hrvatska, 23.05.2000. - 26.05.2000
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Saint-Venants torsion; share stress; boundary element method
Sažetak
Components of stress in Saint-Venant's torsion are determined as gradients of so-called Prandtl's stress function that satisfies Poisson's differential equation. Partial integration performed on the Poisson's differential equation results in integral equation that express Prandtl's stress function as a function of surface share stress, and in integral equation of equilibrium which solution is surface share stress. By application of boundary element method, the integral equation of equilibrium is approximated with set of linear equations, which solution are approximated values of surface share stress on the chosen number of boundary points. Once when surface share stress is determined, it is easy to calculate Prandtl's stress function and its gradients (i.e. stresses) in the arbitrary point of the cross section. The proposed method can be applied to any prismatic solid with uniform cross section, such as shafts, prismatic thin-wall shells, etc.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA