Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 592478

Feature Weighted Nearest Neighbour Classification for Accelerometer-Based Gesture Recognition


Marasović, Tea; Papić, Vladan
Feature Weighted Nearest Neighbour Classification for Accelerometer-Based Gesture Recognition // Proceedings of SoftCom 2012 / Rožić, Nikola ; Begušić, Dinko (ur.).
Split: Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2012. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 592478 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Feature Weighted Nearest Neighbour Classification for Accelerometer-Based Gesture Recognition

Autori
Marasović, Tea ; Papić, Vladan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of SoftCom 2012 / Rožić, Nikola ; Begušić, Dinko - Split : Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2012

ISBN
978-953-290-035-4

Skup
SoftCom 2012

Mjesto i datum
Split, Hrvatska, 11.09.2012. - 13.09.2012

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
gesture recognition; metric learning; classification

Sažetak
Understanding human gestures can be posed as a typical classification problem. Within the computer, gestures are represented as time-varying patterns in feature space. These patterns, though variable, are distinct and have associated meanings. In the absence of a priori knowledge of the underlying class probabilities, classification is performed based on some notion of similarity, e.g. distance, among samples. The k-nearest neighbour (kNN) decision rule has often been used in these pattern recognition problems. The use of this particular technique gives rise to multiple issues, one of them being that it operates under the implicit assumption that all features are of equal importance in deciding the class membership of the pattern to be classified, regardless of their "relevancy". This paper presents an accelerometer-based gesture recognition system that utilizes Mahalanobis distance metric learning to derive optimal weighting scheme for nearest neighbour classification. The metric is trained with the goal of separating different classes by large local margins and pulling closer together samples from the same class, based on using as few features as possible. Our experiments on an arbitrary gesture set show that the proposed method leads to significant improvements in recognition accuracies, yielding simultaneously a maximum of feature discrimination.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
023-0232006-1655 - Biomehanika ljudskih pokreta, upravljanje i rehabilitacija (Zanchi, Vlasta, MZOS ) ( CroRIS)
023-0232006-1662 - Računalni vid u identifikaciji kinematike sportskih aktivnosti (Papić, Vladan, MZOS ) ( CroRIS)
177-0232006-1662 - Računalni vid u identifikaciji kinematike sportskih aktivnosti

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Prirodoslovno-matematički fakultet, Split

Profili:

Avatar Url Vladan Papić (autor)

Avatar Url Tea Marasović (autor)


Citiraj ovu publikaciju:

Marasović, Tea; Papić, Vladan
Feature Weighted Nearest Neighbour Classification for Accelerometer-Based Gesture Recognition // Proceedings of SoftCom 2012 / Rožić, Nikola ; Begušić, Dinko (ur.).
Split: Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2012. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Marasović, T. & Papić, V. (2012) Feature Weighted Nearest Neighbour Classification for Accelerometer-Based Gesture Recognition. U: Rožić, N. & Begušić, D. (ur.)Proceedings of SoftCom 2012.
@article{article, author = {Marasovi\'{c}, Tea and Papi\'{c}, Vladan}, year = {2012}, keywords = {gesture recognition, metric learning, classification}, isbn = {978-953-290-035-4}, title = {Feature Weighted Nearest Neighbour Classification for Accelerometer-Based Gesture Recognition}, keyword = {gesture recognition, metric learning, classification}, publisher = {Fakultet elektrotehnike, strojarstva i brodogradnje Sveu\v{c}ili\v{s}ta u Splitu}, publisherplace = {Split, Hrvatska} }
@article{article, author = {Marasovi\'{c}, Tea and Papi\'{c}, Vladan}, year = {2012}, keywords = {gesture recognition, metric learning, classification}, isbn = {978-953-290-035-4}, title = {Feature Weighted Nearest Neighbour Classification for Accelerometer-Based Gesture Recognition}, keyword = {gesture recognition, metric learning, classification}, publisher = {Fakultet elektrotehnike, strojarstva i brodogradnje Sveu\v{c}ili\v{s}ta u Splitu}, publisherplace = {Split, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font