Pregled bibliografske jedinice broj: 592478
Feature Weighted Nearest Neighbour Classification for Accelerometer-Based Gesture Recognition
Feature Weighted Nearest Neighbour Classification for Accelerometer-Based Gesture Recognition // Proceedings of SoftCom 2012 / Rožić, Nikola ; Begušić, Dinko (ur.).
Split: Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2012. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 592478 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Feature Weighted Nearest Neighbour Classification for Accelerometer-Based Gesture Recognition
Autori
Marasović, Tea ; Papić, Vladan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of SoftCom 2012
/ Rožić, Nikola ; Begušić, Dinko - Split : Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2012
ISBN
978-953-290-035-4
Skup
SoftCom 2012
Mjesto i datum
Split, Hrvatska, 11.09.2012. - 13.09.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
gesture recognition; metric learning; classification
Sažetak
Understanding human gestures can be posed as a typical classification problem. Within the computer, gestures are represented as time-varying patterns in feature space. These patterns, though variable, are distinct and have associated meanings. In the absence of a priori knowledge of the underlying class probabilities, classification is performed based on some notion of similarity, e.g. distance, among samples. The k-nearest neighbour (kNN) decision rule has often been used in these pattern recognition problems. The use of this particular technique gives rise to multiple issues, one of them being that it operates under the implicit assumption that all features are of equal importance in deciding the class membership of the pattern to be classified, regardless of their "relevancy". This paper presents an accelerometer-based gesture recognition system that utilizes Mahalanobis distance metric learning to derive optimal weighting scheme for nearest neighbour classification. The metric is trained with the goal of separating different classes by large local margins and pulling closer together samples from the same class, based on using as few features as possible. Our experiments on an arbitrary gesture set show that the proposed method leads to significant improvements in recognition accuracies, yielding simultaneously a maximum of feature discrimination.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
023-0232006-1655 - Biomehanika ljudskih pokreta, upravljanje i rehabilitacija (Zanchi, Vlasta, MZOS ) ( CroRIS)
023-0232006-1662 - Računalni vid u identifikaciji kinematike sportskih aktivnosti (Papić, Vladan, MZOS ) ( CroRIS)
177-0232006-1662 - Računalni vid u identifikaciji kinematike sportskih aktivnosti
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Prirodoslovno-matematički fakultet, Split