Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 590914

Fractal properties of Bessel equation


Korkut, Luka; Vlah Domagoj; Žubrinić Darko; Županović Vesna
Fractal properties of Bessel equation // 5th Croatian Mathematical Congress June 18 - 21, 2012, Rijeka, Croatia
Rijeka, Hrvatska, 2012. (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 590914 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fractal properties of Bessel equation

Autori
Korkut, Luka ; Vlah Domagoj ; Žubrinić Darko ; Županović Vesna

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Skup
5th Croatian Mathematical Congress June 18 - 21, 2012, Rijeka, Croatia

Mjesto i datum
Rijeka, Hrvatska, 18.06.2012. - 21.06.2012

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
spiral; Bessel equation; box dimension; recti ability; phase dimension; oscillatory dimension

Sažetak
The fractal oscillatority of solutions of differential equations at $t=\infty$ is measured by oscillatory and phase dimensions defined through the box dimension. The phase dimension of the solution of the second order differential equation is defined as the box dimension of the graph of the solution plotted in the phase plane. The oscillatory dimension of solutions of Bessel equation has been computed in \cite{;pasic_bessel};. In this work, the phase dimension of solutions of Bessel equation has been computed to be equal to $\frac{;4};{;3};$. Inspired by some generalization of Bessel equation introduced in \cite{;pasic_bessel};, the phase dimension of solutions of a similar generalization has been computed. As Bessel equation is non-autonomous we also interpret it as a system in $\mathbb{;R};^3$. {;\bf References};: \begin{;enumerate}; \bibitem{;kvzz}; Luka Korkut, Domagoj Vlah, Darko \v Zubrini\'c and Vesna \v Zupanovi\'c, Fractal properties of a class of spiral trajectories in $\mathbb{;R};^3$ and applications, preprint. \bibitem{;pasic_bessel}; Mervan\ Pa\v si\'c, Satoshi Tanaka, Fractal oscillations of self-adjoint and damped linear differential equations of second-order, Applied Mathematics and Computation, Vol. 218, 5 (2011), 2281--2293 \end{;enumerate};

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
036-0361621-1291 - Nelinearna analiza diferencijalnih jednadžbi i dinamičkih sustava (Pašić, Mervan, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Domagoj Vlah (autor)

Avatar Url Darko Žubrinić (autor)

Avatar Url Vesna Županović (autor)

Avatar Url Luka Korkut (autor)


Citiraj ovu publikaciju:

Korkut, Luka; Vlah Domagoj; Žubrinić Darko; Županović Vesna
Fractal properties of Bessel equation // 5th Croatian Mathematical Congress June 18 - 21, 2012, Rijeka, Croatia
Rijeka, Hrvatska, 2012. (predavanje, međunarodna recenzija, sažetak, znanstveni)
Korkut, L., Vlah Domagoj, Žubrinić Darko & Županović Vesna (2012) Fractal properties of Bessel equation. U: 5th Croatian Mathematical Congress June 18 - 21, 2012, Rijeka, Croatia.
@article{article, author = {Korkut, Luka}, year = {2012}, keywords = {spiral, Bessel equation, box dimension, recti ability, phase dimension, oscillatory dimension}, title = {Fractal properties of Bessel equation}, keyword = {spiral, Bessel equation, box dimension, recti ability, phase dimension, oscillatory dimension}, publisherplace = {Rijeka, Hrvatska} }
@article{article, author = {Korkut, Luka}, year = {2012}, keywords = {spiral, Bessel equation, box dimension, recti ability, phase dimension, oscillatory dimension}, title = {Fractal properties of Bessel equation}, keyword = {spiral, Bessel equation, box dimension, recti ability, phase dimension, oscillatory dimension}, publisherplace = {Rijeka, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font