Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 590369

Linear singular differntial equations in Banach space and nonrectifiable attractivity in two- dimensional linear differential systems


Miličić, Siniša; Pašić, Mervan
Linear singular differntial equations in Banach space and nonrectifiable attractivity in two- dimensional linear differential systems // 5th Croatian Mathematical Congress
Rijeka, Hrvatska, 2012. (predavanje, nije recenziran, sažetak, znanstveni)


CROSBI ID: 590369 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Linear singular differntial equations in Banach space and nonrectifiable attractivity in two- dimensional linear differential systems

Autori
Miličić, Siniša ; Pašić, Mervan

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Skup
5th Croatian Mathematical Congress

Mjesto i datum
Rijeka, Hrvatska, 18.06.2012. - 21.06.2012

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Nije recenziran

Ključne riječi
linear nonautonomous differential operator; attractivity; singualrity; zero-solution; rectifiability

Sažetak
We study the asymptotic behaviour near t = 0 of all solutions x ∈ C 1 ((0, t0 ] ; X) of linear nonautonomous differential equation x = A(t)x, t ∈ (0, t0 ] (1) where X is an arbitrary Banach space and A : (0, t0 ] → L(X) is an operator-valued function which may be singular at t = 0. In terms of some asmyptotic behaviour of the operator norm A(t) near t = 0, the kind of singularity (resp. regularity) of equation (1) is characterized: for every x0 ∈ X and solution x of (1) such that x(t0 ) = x0 , we have x(t) X → 0 as t → 0 and x X ∈ L1 ((0, t0 ]) (resp. x X ∈ L1 ((0, t0 ])). Next, when X = R2 and equation (1) is a two-dimensional linear integrable differntial system, our previous result allows us to characterize the so-called nonrectifiable (resp. rectifiable) attractivity of zero the zero solution to the equation (1), that is x(t) R2 → 0 as t → 0, the solution’s curve Γx is a Jordan curve in R2 and length(Γx ) = ∞ (resp. length(Γx ) < ∞).

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
036-1170889-1054 - Ocjene suma, integrala i integralnih transformacija (Elezović, Neven, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mervan Pašić (autor)

Avatar Url Siniša Miličić (autor)


Citiraj ovu publikaciju:

Miličić, Siniša; Pašić, Mervan
Linear singular differntial equations in Banach space and nonrectifiable attractivity in two- dimensional linear differential systems // 5th Croatian Mathematical Congress
Rijeka, Hrvatska, 2012. (predavanje, nije recenziran, sažetak, znanstveni)
Miličić, S. & Pašić, M. (2012) Linear singular differntial equations in Banach space and nonrectifiable attractivity in two- dimensional linear differential systems. U: 5th Croatian Mathematical Congress.
@article{article, author = {Mili\v{c}i\'{c}, Sini\v{s}a and Pa\v{s}i\'{c}, Mervan}, year = {2012}, keywords = {linear nonautonomous differential operator, attractivity, singualrity, zero-solution, rectifiability}, title = {Linear singular differntial equations in Banach space and nonrectifiable attractivity in two- dimensional linear differential systems}, keyword = {linear nonautonomous differential operator, attractivity, singualrity, zero-solution, rectifiability}, publisherplace = {Rijeka, Hrvatska} }
@article{article, author = {Mili\v{c}i\'{c}, Sini\v{s}a and Pa\v{s}i\'{c}, Mervan}, year = {2012}, keywords = {linear nonautonomous differential operator, attractivity, singualrity, zero-solution, rectifiability}, title = {Linear singular differntial equations in Banach space and nonrectifiable attractivity in two- dimensional linear differential systems}, keyword = {linear nonautonomous differential operator, attractivity, singualrity, zero-solution, rectifiability}, publisherplace = {Rijeka, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font