Pregled bibliografske jedinice broj: 589208
Ergodic property of stable-like Markov chains
Ergodic property of stable-like Markov chains // Journal of theoretical probability, 29 (2016), 2; 459-490 doi:10.1007/s10959-014-0586-4 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 589208 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Ergodic property of stable-like Markov chains
Autori
Sandrić, Nikola
Izvornik
Journal of theoretical probability (0894-9840) 29
(2016), 2;
459-490
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
ergodicity; Foster-Lyapunov drift criteria; recurrence; stable distribution; stable-like Markov chain; transience
Sažetak
A stable-like Markov chain is a time-homogeneous Markov chain on the real line with the transition kernel $p(x, dy)=f_x(y-x)dy$, where the density functions $f_x(y)$, for large $|y|$, have a power- law decay with exponent $\alpha(x)+1$, where $\alpha(x)\in(0, 2)$. In this paper, under a certain uniformity condition on the density functions $f_x(y)$ and additional mild drift conditions, we give sufficient conditions for recurrence in the case when $0<\liminf_{; ; |x|\longrightarrow\infty}; ; \alpha(x)$, sufficient conditions for transience in the case when $\limsup_{; ; |x|\longrightarrow\infty}; ; \alpha(x) <2$ and sufficient conditions for ergodicity in the case when $0<\inf\ {; ; \alpha(x):x\in\R\}; ; $. As a special case of these results, we give a new proof for the recurrence and transience property of a symmetric $\alpha$-stable random walk on $\R$ with the index of stability $\alpha\neq1.$
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-3526 - Stohastičke metode u analitičkim i primijenjenim problemima (SMAAP) (Vondraček, Zoran, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Građevinski fakultet, Zagreb
Profili:
Nikola Sandrić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet