Pregled bibliografske jedinice broj: 587030
On the minimal index and indices of the form 2^a 3^b in a parametric family of bicyclic biquadratic felds
On the minimal index and indices of the form 2^a 3^b in a parametric family of bicyclic biquadratic felds // 5th Croatian Mathematical Congress / Crnković, Dean ; Mikulić Crnković, Vedrana ; Rukavina, Sanja (ur.).
Rijeka: Fakultet za matematiku Sveučilišta u Rijeci, 2012. str. 41-41 (predavanje, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 587030 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the minimal index and indices of the form 2^a 3^b in a parametric family of bicyclic biquadratic felds
Autori
Jadrijević, Borka
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
5th Croatian Mathematical Congress
/ Crnković, Dean ; Mikulić Crnković, Vedrana ; Rukavina, Sanja - Rijeka : Fakultet za matematiku Sveučilišta u Rijeci, 2012, 41-41
ISBN
037-0372781-2821
Skup
5th Croatian Mathematical Congress
Mjesto i datum
Rijeka, Hrvatska, 18.06.2012. - 21.06.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
index form equations; minimal index; bicyclic biquadratic elds;
Sažetak
Let c >= 3 be integer such that c ; c - 2 ; c + 4 are square-free integers relatively prime in pairs and let Lc = Q(sqrt((c - 2) c), sqrt((c + 4) c)) be a family of bicyclic biquadratic fields. We find minimal index mu(Lc) and determine all elements with minimal index in Lc: Furthermore, we give some results concerning elements alpha with index of the form mu(alpha) = 2^a 3^b. Precisely, we show that for every integer K >= 12 if c >= K-1 and if alpha is an element with index mu(alpha) = 2^a 3^b <= K, then alpha is an element with minimal index mu(alpha) = mu(Lc) = 12. We also show that for every integer C0 >= 3 we can find effectively computable integers M (C0) and N (C0) such that in case c <= C0 there are no elements alpha with index of the form mu(alpha) = 2^a 3^b, where a > M (C0) or b > N (C0).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372781-2821 - Diofantske jednadžbe i eliptičke krivulje (Dujella, Andrej, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Split
Profili:
Borka Jadrijević
(autor)