Pregled bibliografske jedinice broj: 585782
Householder's approximants and continued fraction expansion of quadratic irrationals
Householder's approximants and continued fraction expansion of quadratic irrationals // 15th International Conference on Fibonacci Numbers and Their Applications / Liptai, Kalman (ur.).
Eger: Eszterhazy Karoly College, 2012. str. 75-75 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 585782 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Householder's approximants and continued fraction expansion of quadratic irrationals
Autori
Petričević, Vinko
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
15th International Conference on Fibonacci Numbers and Their Applications
/ Liptai, Kalman - Eger : Eszterhazy Karoly College, 2012, 75-75
Skup
15th International Conference on Fibonacci Numbers and Their Applications
Mjesto i datum
Eger, Mađarska, 25.06.2012. - 30.06.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Continued fractions ; Householder's iterative methods
Sažetak
Let $\alpha$ be a quadratic irrational. It is well known that the continued fraction expansion of $\alpha$ is periodic. We observe Householder's approximant of order $m-1$ for the equation $(x-\alpha)(x-\alpha')=0$ and $x_0=p_n/q_n$: $R^{; ; ; (m)}; ; ; _n = \frac{; ; ; \alpha(p_n/q_n-\alpha')^{; ; ; m}; ; ; - \alpha' (p_n/q_n-\alpha)^{; ; ; m}; ; ; }; ; ; {; ; ; (p_n/q_n-\alpha')^{; ; ; m}; ; ; - (p_n/q_n-\alpha)^{; ; ; m}; ; ; }; ; ; $. We say that $R^{; ; ; (m)}; ; ; _n$ is good approximant if $R^{; ; ; (m)}; ; ; _n$ is a convergent of $\alpha$. When period begins with $a_1$, there is a good approximant at the end of the period, and when period is palindromic and has even length $\ell$, there is a good approximant in the half of the period. So when $\ell\le2$, then every approximant is good, and then it holds $R^{; ; ; (m)}; ; ; _n=\frac{; ; ; p_{; ; ; m(n+1)-1}; ; ; }; ; ; {; ; ; q_{; ; ; m(n+1)-1}; ; ; }; ; ; $ for all $n\ge0$. We prove that to be a good approximant is the palindromic and the periodic property. Further, we define the numbers $j^{; ; ; (m)}; ; ; =j^{; ; ; (m)}; ; ; (\alpha, n)$ by $R^{; ; ; (m)}; ; ; _n=\frac{; ; ; p_{; ; ; m(n+1)-1+2j}; ; ; }; ; ; {; ; ; q_{; ; ; m(n+1)-1+2j}; ; ; }; ; ; $ if $R^{; ; ; (m)}; ; ; _n$ is a good approximant. We prove that $|j^{; ; ; (m)}; ; ; |$ is unbounded by constructing an explicit family of quadratic irrationals, which involves the Fibonacci numbers.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZOS-037-0372791-2802 - Teorija dimenzije i oblika (Mardešić, Sibe, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Vinko Petričević
(autor)