Pregled bibliografske jedinice broj: 584999
Mapped infinite elements in non-linear stress analysis with special respect to gravity loading
Mapped infinite elements in non-linear stress analysis with special respect to gravity loading // Numerical Methods for Non-Linear Problems, Volume 3 / Taylor, Cedric ; Owen, Roger ; Hinton, Ernest ; Damjanić, Frano B. (ur.).
Swansea: Pineridge Press, 1986. str. 1263-1275 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 584999 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Mapped infinite elements in non-linear stress analysis with special respect to gravity loading
Autori
Marović, Pavao ; Damjanić, Frano B.
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Numerical Methods for Non-Linear Problems, Volume 3
/ Taylor, Cedric ; Owen, Roger ; Hinton, Ernest ; Damjanić, Frano B. - Swansea : Pineridge Press, 1986, 1263-1275
ISBN
0-906674-52-2
Skup
3rd International Conference on Numerical Methods for Non-Linear Problems
Mjesto i datum
Dubrovnik, Hrvatska, 15.09.1986. - 18.09.1986
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
unbounded domain; mapped infinite elements; gravity loading; stress analysis
Sažetak
In the large spectrum of practical engineering problems from different classes of field problema, there is always a question how to treat unbounded continua. This paper considers the use of mapped infinite elements in conjuction with finite elements in non-linear stress analysis extending previous research on the use of mapped infinite elements in transient thermal analysis and in the linear elastic stress analysis. Material non-linear behaviour is described by Perzyna's elasto-visco-plastic model. Special attention is given to gravity loading, and its common action with other loadings. Generally the gravity loading can be treated in two different ways: (a) by evaluating equivalent nodal forces on element due to element body forces or gravity stresses in Gauss points ; (b) by incorporating gravity stresses from Gauss points directly in total stress vector as initial stresses. The applicability of the suggested techniques is examined and the benefits of employing proposed finite/infinite element approach is then illustrated by the solution of few unbounded geomechanical problems.
Izvorni jezik
Engleski
Znanstvena područja
Građevinarstvo, Računarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split
Profili:
Pavao Marović
(autor)