Pregled bibliografske jedinice broj: 581448
Texture-Based Detection of WellDefined Benthic Monoculture Boundaries From ROV Pilot Camera Images
Texture-Based Detection of WellDefined Benthic Monoculture Boundaries From ROV Pilot Camera Images // Proceedings of the 4th COnference on Marine Technology in memory of Academician Zlatko Winkler / Rožanić, Igor (ur.).
Rijeka: Tehnički fakultet Sveučilišta u Rijeci, 2011. str. 247-259 (predavanje, domaća recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 581448 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Texture-Based Detection of WellDefined Benthic Monoculture Boundaries From ROV Pilot Camera Images
Autori
Barišić, Matko ; Vasilijević, Antonio ; Nađ, Đula
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 4th COnference on Marine Technology in memory of Academician Zlatko Winkler
/ Rožanić, Igor - Rijeka : Tehnički fakultet Sveučilišta u Rijeci, 2011, 247-259
Skup
4th COnference on Marine Technology in memory of Academician Zlatko Winkler
Mjesto i datum
Rijeka, Hrvatska, 25.11.2011. - 26.11.2011
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
image segmentation ; texture segmentation ; texture classification ; wavelet transform ; vector quantization ; nonlinear binary-image transforms ; benthic regions classifications ; benthic culture bed
Sažetak
The paper deals with an image processing method for extracting the direction of the propagation of the upper Neptune grass (Posidonia oceanica ) bed boundary along the sea-bottom by the use of a monocular camera. The ultimate goal of research is to integrate this classifier into a feedback loop allowing an ROV to navigate the upper sea-grass bed border autonomously. This facilitates geo- referenced mapping of the border. The algorithm for extraction features four distinct phases: multi-resolution analysis using wavelets, vector quantization, post-processing of the obtained binary image and the extraction of the line parameters. The classification and line-fitting procedure are computationally optimized and made more robust by using weights in the Least Squares fitting procedure, and using nonlinear binary-image domain processing.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Temeljne tehničke znanosti
POVEZANOST RADA
Projekti:
036-0362975-2999 - RoboMarSec - Podvodna robotika u zaštiti podmorja i pomorskoj sigurnosti
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb