Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 5784

Adaptive recurrent neural networks for robot control


Novaković, Branko
Adaptive recurrent neural networks for robot control // Proceedings-7.International Machine Design and Production Conference (UMTIK"96), Vol. 1 / Balkan, Tuna (ur.).
Ankara: Middle East Technical University, Ankara, Turkey, 1996. str. 809-818 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 5784 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Adaptive recurrent neural networks for robot control

Autori
Novaković, Branko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings-7.International Machine Design and Production Conference (UMTIK"96), Vol. 1 / Balkan, Tuna - Ankara : Middle East Technical University, Ankara, Turkey, 1996, 809-818

Skup
7.International Machine Design and Production Conference (UMTIK"96)

Mjesto i datum
Ankara, Turska, 11.09.1996. - 13.09.1996

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Adaptive robot control; recurrent neural networks; one-step learning

Sažetak
Abstract - Effects that are generally accepted to take place in real neurones are pulse-coded inputs and outputs (input and outputs activation functions), a dynamic transmission function of the synapse (time-varying weights and interaction activation functions), and capacitive behaviour of the cell membrane (time-delay of signals). This paper follows the ideas of the synthesis of the biological NN prototypes in order to close in the behaviour of the real biological neurones, as close as possible. In this sense a new very fast algorithm for synthesis of adaptive recurrent discrete-time neural networks is proposed, where the following concepts are employed: (i) time-varying NN weights distribution, (ii) one-step learning iteration approach, and (iii) adaptation of interaction weight matrix. Following the proposed NN synthesis procedure the adaptive recurrent NN for an adaptive nonlinear robot control is designed.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Projekti:
120009

Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Branko Novaković (autor)


Citiraj ovu publikaciju:

Novaković, Branko
Adaptive recurrent neural networks for robot control // Proceedings-7.International Machine Design and Production Conference (UMTIK"96), Vol. 1 / Balkan, Tuna (ur.).
Ankara: Middle East Technical University, Ankara, Turkey, 1996. str. 809-818 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Novaković, B. (1996) Adaptive recurrent neural networks for robot control. U: Balkan, T. (ur.)Proceedings-7.International Machine Design and Production Conference (UMTIK"96), Vol. 1.
@article{article, author = {Novakovi\'{c}, Branko}, editor = {Balkan, T.}, year = {1996}, pages = {809-818}, keywords = {Adaptive robot control, recurrent neural networks, one-step learning}, title = {Adaptive recurrent neural networks for robot control}, keyword = {Adaptive robot control, recurrent neural networks, one-step learning}, publisher = {Middle East Technical University, Ankara, Turkey}, publisherplace = {Ankara, Turska} }
@article{article, author = {Novakovi\'{c}, Branko}, editor = {Balkan, T.}, year = {1996}, pages = {809-818}, keywords = {Adaptive robot control, recurrent neural networks, one-step learning}, title = {Adaptive recurrent neural networks for robot control}, keyword = {Adaptive robot control, recurrent neural networks, one-step learning}, publisher = {Middle East Technical University, Ankara, Turkey}, publisherplace = {Ankara, Turska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font