Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 577525

Fractal oscillations of chirp functions and second-order differential equations


Pašić, Mervan
Fractal oscillations of chirp functions and second-order differential equations // First International Meeting PISRS - PISRS Conference 2011 - Analysis, Fractal Geometry, Dynamical Systems and Economics
Messina, Italija, 2011. (plenarno, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 577525 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fractal oscillations of chirp functions and second-order differential equations

Autori
Pašić, Mervan

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Skup
First International Meeting PISRS - PISRS Conference 2011 - Analysis, Fractal Geometry, Dynamical Systems and Economics

Mjesto i datum
Messina, Italija, 08.11.2011. - 12.11.2011

Vrsta sudjelovanja
Plenarno

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
chirp; fractal oscillations; linear differential equations

Sažetak
A function $y(x)=a (x)\, S(\varphi (x))$ is called a chirp function, where $a(x)$ and $\varphi (x)$ denote respectively the amplitude and phase of $y(x)$ and $S=S(t)$ is a periodic function on $\mathbb{;R};$. For an arbitrary real number $s\in [1, 2)$, we find some simple asymptotic conditions on $a(x)$ and $\varphi (x)$ near $x=0$ such that the chirp function $y(x)$ is fractal oscillatory near $x=0$. It means that $y(x)$ oscillates near $x=0$ and its graph $\Gamma (y)$ is a fractal curve in $\mathbb{;R};^2$, that is, the box-counting dimension of $\Gamma (y)$ is equal to $s$ and the $s$-dimensional upper Minkowski content of $\Gamma (y)$ is strictly positive and finite. The fractal oscillations have been recently introduced in the case of the graph of oscillatory solutions of several types of differential equations: linear Euler type equation $y''+\lambda x^{;-\sigma};y=0$ (see Pa\v{;s};i\'c in 2008), general second-order linear equation $y''+f(x)y=0$ (see Kwong, Pa\v{;s};i\'c and Wong in 2008), where $f(x)$ satisfies the Hartman-Wintner asymptotic condition near $x=0$ (see the books by Coppel from 1965 and Hartman from 1982), half-linear equation $(|y'|^{;p-2};y')'+f(x)|y|^{;p-2};y=0$ (see Pa\v{;s};i\'c and Wong in 2009), and linear self-adjoint equation $(p(x)y')'+q(x)y=0$ (see Pa\v{;s};i\'c and Tanaka in 2011).

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
036-0361621-1291 - Nelinearna analiza diferencijalnih jednadžbi i dinamičkih sustava (Pašić, Mervan, MZO ) ( CroRIS)
036-0361621-3012 - Napredne strategije upravljanja i estimacije u složenim sustavima (Perić, Nedjeljko, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mervan Pašić (autor)


Citiraj ovu publikaciju:

Pašić, Mervan
Fractal oscillations of chirp functions and second-order differential equations // First International Meeting PISRS - PISRS Conference 2011 - Analysis, Fractal Geometry, Dynamical Systems and Economics
Messina, Italija, 2011. (plenarno, međunarodna recenzija, sažetak, znanstveni)
Pašić, M. (2011) Fractal oscillations of chirp functions and second-order differential equations. U: First International Meeting PISRS - PISRS Conference 2011 - Analysis, Fractal Geometry, Dynamical Systems and Economics.
@article{article, author = {Pa\v{s}i\'{c}, Mervan}, year = {2011}, keywords = {chirp, fractal oscillations, linear differential equations}, title = {Fractal oscillations of chirp functions and second-order differential equations}, keyword = {chirp, fractal oscillations, linear differential equations}, publisherplace = {Messina, Italija} }
@article{article, author = {Pa\v{s}i\'{c}, Mervan}, year = {2011}, keywords = {chirp, fractal oscillations, linear differential equations}, title = {Fractal oscillations of chirp functions and second-order differential equations}, keyword = {chirp, fractal oscillations, linear differential equations}, publisherplace = {Messina, Italija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font