Pregled bibliografske jedinice broj: 577525
Fractal oscillations of chirp functions and second-order differential equations
Fractal oscillations of chirp functions and second-order differential equations // First International Meeting PISRS - PISRS Conference 2011 - Analysis, Fractal Geometry, Dynamical Systems and Economics
Messina, Italija, 2011. (plenarno, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 577525 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fractal oscillations of chirp functions and second-order differential equations
Autori
Pašić, Mervan
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
First International Meeting PISRS - PISRS Conference 2011 - Analysis, Fractal Geometry, Dynamical Systems and Economics
Mjesto i datum
Messina, Italija, 08.11.2011. - 12.11.2011
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
chirp; fractal oscillations; linear differential equations
Sažetak
A function $y(x)=a (x)\, S(\varphi (x))$ is called a chirp function, where $a(x)$ and $\varphi (x)$ denote respectively the amplitude and phase of $y(x)$ and $S=S(t)$ is a periodic function on $\mathbb{;R};$. For an arbitrary real number $s\in [1, 2)$, we find some simple asymptotic conditions on $a(x)$ and $\varphi (x)$ near $x=0$ such that the chirp function $y(x)$ is fractal oscillatory near $x=0$. It means that $y(x)$ oscillates near $x=0$ and its graph $\Gamma (y)$ is a fractal curve in $\mathbb{;R};^2$, that is, the box-counting dimension of $\Gamma (y)$ is equal to $s$ and the $s$-dimensional upper Minkowski content of $\Gamma (y)$ is strictly positive and finite. The fractal oscillations have been recently introduced in the case of the graph of oscillatory solutions of several types of differential equations: linear Euler type equation $y''+\lambda x^{;-\sigma};y=0$ (see Pa\v{;s};i\'c in 2008), general second-order linear equation $y''+f(x)y=0$ (see Kwong, Pa\v{;s};i\'c and Wong in 2008), where $f(x)$ satisfies the Hartman-Wintner asymptotic condition near $x=0$ (see the books by Coppel from 1965 and Hartman from 1982), half-linear equation $(|y'|^{;p-2};y')'+f(x)|y|^{;p-2};y=0$ (see Pa\v{;s};i\'c and Wong in 2009), and linear self-adjoint equation $(p(x)y')'+q(x)y=0$ (see Pa\v{;s};i\'c and Tanaka in 2011).
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Temeljne tehničke znanosti
POVEZANOST RADA
Projekti:
036-0361621-1291 - Nelinearna analiza diferencijalnih jednadžbi i dinamičkih sustava (Pašić, Mervan, MZO ) ( CroRIS)
036-0361621-3012 - Napredne strategije upravljanja i estimacije u složenim sustavima (Perić, Nedjeljko, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Mervan Pašić
(autor)