Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 575772

Development of artificial neural network model for diesel fuel properties prediction using vibrational spectroscopy


Bolanča, Tomislav; Marinović, Slavica; Ukić, Šime; Jukić, Ante; Rukavina, Vinko
Development of artificial neural network model for diesel fuel properties prediction using vibrational spectroscopy // Acta chimica Slovenica, 59 (2012), 2; 249-257 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 575772 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Development of artificial neural network model for diesel fuel properties prediction using vibrational spectroscopy

Autori
Bolanča, Tomislav ; Marinović, Slavica ; Ukić, Šime ; Jukić, Ante ; Rukavina, Vinko

Izvornik
Acta chimica Slovenica (1318-0207) 59 (2012), 2; 249-257

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
artificial neural network ; FTIR-ATR ; Raman ; diesel fuel

Sažetak
This paper describes development of artificial neural network models which can be used to correlate and predict diesel fuel properties from several FTIR-ATR absorbances and Raman intensities as input variables. Multilayer feed forward and radial basis function neural networks have been used to rapid and simultaneous prediction of cetane number, cetane index, density, viscosity, distillation temperatures at 10% (T10), 50% (T50) and 90% (T90) recovery, contents of total aromatics and polycyclic aromatic hydrocarbons of commercial diesel fuels. In this study two-phase training procedures for multilayer feed forward networks were applied. While first phase training algorithm was constantly the back propagation one, two second phase training algorithms were varied and compared, namely: conjugate gradient and quasi Newton. In case of radial basis function network, radial layer was trained using K-means radial assignment algorithm and three different radial spread algorithms: explicit, isotropic and K- nearest neighbour. The number of hidden layer neurons and experimental data points used for the training set have been optimized for both neural networks in order to insure good predictive ability by reducing unnecessary experimental work. This work shows that developed artificial neural network models can determine main properties of diesel fuels simultaneously based on a single and fast IR or Raman measurement.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Kemijsko inženjerstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Projekti:
MZOS-125-1251963-1980 - Optimiranje svojstava kopolimera procesima usmjerenih radikalskih polimerizacija (Jukić, Ante, MZOS ) ( CroRIS)
MZOS-125-1253092-3004 - Procesi ionske izmjene u sustavu kvalitete industrijskih voda (Bolanča, Tomislav, MZOS ) ( CroRIS)

Ustanove:
INA-Industrija nafte d.d.,
Fakultet kemijskog inženjerstva i tehnologije, Zagreb

Citiraj ovu publikaciju:

Bolanča, Tomislav; Marinović, Slavica; Ukić, Šime; Jukić, Ante; Rukavina, Vinko
Development of artificial neural network model for diesel fuel properties prediction using vibrational spectroscopy // Acta chimica Slovenica, 59 (2012), 2; 249-257 (međunarodna recenzija, članak, znanstveni)
Bolanča, T., Marinović, S., Ukić, Š., Jukić, A. & Rukavina, V. (2012) Development of artificial neural network model for diesel fuel properties prediction using vibrational spectroscopy. Acta chimica Slovenica, 59 (2), 249-257.
@article{article, author = {Bolan\v{c}a, Tomislav and Marinovi\'{c}, Slavica and Uki\'{c}, \v{S}ime and Juki\'{c}, Ante and Rukavina, Vinko}, year = {2012}, pages = {249-257}, keywords = {artificial neural network, FTIR-ATR, Raman, diesel fuel}, journal = {Acta chimica Slovenica}, volume = {59}, number = {2}, issn = {1318-0207}, title = {Development of artificial neural network model for diesel fuel properties prediction using vibrational spectroscopy}, keyword = {artificial neural network, FTIR-ATR, Raman, diesel fuel} }
@article{article, author = {Bolan\v{c}a, Tomislav and Marinovi\'{c}, Slavica and Uki\'{c}, \v{S}ime and Juki\'{c}, Ante and Rukavina, Vinko}, year = {2012}, pages = {249-257}, keywords = {artificial neural network, FTIR-ATR, Raman, diesel fuel}, journal = {Acta chimica Slovenica}, volume = {59}, number = {2}, issn = {1318-0207}, title = {Development of artificial neural network model for diesel fuel properties prediction using vibrational spectroscopy}, keyword = {artificial neural network, FTIR-ATR, Raman, diesel fuel} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • CA Search (Chemical Abstracts)





Contrast
Increase Font
Decrease Font
Dyslexic Font