Pregled bibliografske jedinice broj: 575772
Development of artificial neural network model for diesel fuel properties prediction using vibrational spectroscopy
Development of artificial neural network model for diesel fuel properties prediction using vibrational spectroscopy // Acta chimica Slovenica, 59 (2012), 2; 249-257 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 575772 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Development of artificial neural network model for diesel fuel properties prediction using vibrational spectroscopy
Autori
Bolanča, Tomislav ; Marinović, Slavica ; Ukić, Šime ; Jukić, Ante ; Rukavina, Vinko
Izvornik
Acta chimica Slovenica (1318-0207) 59
(2012), 2;
249-257
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
artificial neural network ; FTIR-ATR ; Raman ; diesel fuel
Sažetak
This paper describes development of artificial neural network models which can be used to correlate and predict diesel fuel properties from several FTIR-ATR absorbances and Raman intensities as input variables. Multilayer feed forward and radial basis function neural networks have been used to rapid and simultaneous prediction of cetane number, cetane index, density, viscosity, distillation temperatures at 10% (T10), 50% (T50) and 90% (T90) recovery, contents of total aromatics and polycyclic aromatic hydrocarbons of commercial diesel fuels. In this study two-phase training procedures for multilayer feed forward networks were applied. While first phase training algorithm was constantly the back propagation one, two second phase training algorithms were varied and compared, namely: conjugate gradient and quasi Newton. In case of radial basis function network, radial layer was trained using K-means radial assignment algorithm and three different radial spread algorithms: explicit, isotropic and K- nearest neighbour. The number of hidden layer neurons and experimental data points used for the training set have been optimized for both neural networks in order to insure good predictive ability by reducing unnecessary experimental work. This work shows that developed artificial neural network models can determine main properties of diesel fuels simultaneously based on a single and fast IR or Raman measurement.
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Kemijsko inženjerstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Projekti:
MZOS-125-1251963-1980 - Optimiranje svojstava kopolimera procesima usmjerenih radikalskih polimerizacija (Jukić, Ante, MZOS ) ( CroRIS)
MZOS-125-1253092-3004 - Procesi ionske izmjene u sustavu kvalitete industrijskih voda (Bolanča, Tomislav, MZOS ) ( CroRIS)
Ustanove:
INA-Industrija nafte d.d.,
Fakultet kemijskog inženjerstva i tehnologije, Zagreb
Profili:
Ante Jukić
(autor)
Slavica Marinović
(autor)
Tomislav Bolanča
(autor)
Vinko Rukavina
(autor)
Šime Ukić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- CA Search (Chemical Abstracts)