Pregled bibliografske jedinice broj: 575254
Sparse multikernel support vector regression machines trained by active learning
Sparse multikernel support vector regression machines trained by active learning // Expert systems with applications, 39 (2012), 12; 11029-11035 doi:10.1016/j.eswa.2012.03.021 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 575254 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Sparse multikernel support vector regression machines trained by active learning
Autori
Čeperić, Vladimir ; Gielen, Georges ; Barić, Adrijan
Izvornik
Expert systems with applications (0957-4174) 39
(2012), 12;
11029-11035
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
support vector machines; support vector regression; multikernel; sparse models; active learning
Sažetak
A method for the sparse multikernel support vector regression machines is presented. The proposed method achieves a high accuracy versus complexity ratio and allows the user to adjust the complexity of the resulting models. The sparse representation is guaranteed by limiting the number of training data points for the support vector regression method. Each training data point is selected based on its influence on the accuracy of the model using the active learning principle. A different kernel function is attributed to each training data point, yielding multikernel regressor. The advantages of the proposed method are illustrated on several examples and the experiments show the advantages of the proposed method.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
036-0361621-1622 - Kvaliteta signala u integriranim sklopovima s mješovitim signalom (Barić, Adrijan, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Cambridge/Computer and Information Abstracts
- SCISEARCH
- Scopus