Pregled bibliografske jedinice broj: 574852
Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems
Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems // Optics express, 20 (2012), S3; A366-A384 doi:10.1364/OE.20.00A366 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 574852 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems
Autori
Ilić, Ognjen ; Jablan, Marinko ; Joannopoulos, John ; Celanovic, Ivan ; Soljačić, Marin
Izvornik
Optics express (1094-4087) 20
(2012), S3;
A366-A384
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
photovoltaic; sSubwavelength structures; nanostructures; surface plasmons
(photovoltaic; subwavelength structures; nanostructures; surface plasmons)
Sažetak
Near-field thermophotovoltaic (TPV) systems with carefully tailored emitter-PV properties show large promise for a new temperature range (600 − 1200K) solid state energy conversion, where conventional thermoelectric (TE) devices cannot operate due to high temperatures and far-field TPV schemes suffer from low efficiency and power density. We present a detailed theoretical study of several different implementations of thermal emitters using plasmonic materials and graphene. We find that optimal improvements over the black body limit are achieved for low bandgap semiconductors and properly matched plasmonic frequencies. For a pure plasmonic emitter, theoretically predicted generated power density of 14 W cm2 and efficiency of 36% can be achieved at 600K (hot- side), for 0.17eV bandgap (InSb). Developing insightful approximations, we argue that large plasmonic losses can, contrary to intuition, be helpful in enhancing the overall near-field transfer. We discuss and quantify the properties of an optimal near-field photovoltaic (PV) diode. In addition, we study plasmons in graphene and show that doping can be used to tune the plasmonic dispersion relation to match the PV cell bangap. In case of graphene, theoretically predicted generated power density of 6(120) W cm2 and efficiency of 35(40)% can be achieved at 600(1200)K, for 0.17eV bandgap. With the ability to operate in intermediate temperature range, as well as high efficiency and power density, near-field TPV systems have the potential to complement conventional TE and TPV solid state heat-to- electricity conversion devices.
Izvorni jezik
Engleski
Znanstvena područja
Fizika
POVEZANOST RADA
Projekti:
119-0000000-1015 - Nelinearne pojave i valna dinamika u fotoničkim sustavima (Buljan, Hrvoje, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE