Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 570444

Uncensoring censored data for machine learning: A likelihood-based approach


Štajduhar, Ivan; Dalbelo-Bašić, Bojana
Uncensoring censored data for machine learning: A likelihood-based approach // Expert systems with applications, 39 (2012), 8; 7226-7234 doi:10.1016/j.eswa.2012.01.054 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 570444 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Uncensoring censored data for machine learning: A likelihood-based approach

Autori
Štajduhar, Ivan ; Dalbelo-Bašić, Bojana

Izvornik
Expert systems with applications (0957-4174) 39 (2012), 8; 7226-7234

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
survival analysis; censoring; machine learning; denoising; data likelihood; classification

Sažetak
Various machine learning techniques have been applied to different problems in survival analysis in the last decade. They were usually adapted to learning from censored survival data by using the information on observation time. This includes learning from parts of the data or interventions to the learning algorithms. Efficient models were established in various fields of clinical medicine and bioinformatics. In this paper, we propose a pre-processing method for adapting the censored survival data to be used with ordinary machine learning algorithms. This is done by pre-assigning censored instances a positive or negative outcome according to their features and observation time. The proposed procedure calculates the goodness of fit of each censored instance to both the distribution of positives and the spoiled distribution of negatives in the entire dataset and relabels that instance accordingly. We performed a thorough empirical testing of our method in a simulation study and on two real-world medical datasets, using the naive Bayes classifier and decision trees. When compared to one of the popular ML methods dealing with survival, our method provided good results, especially when applied to heavily censored data.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
036-1300646-1986 - Otkrivanje znanja u tekstnim podacima (Dalbelo-Bašić, Bojana, MZO ) ( CroRIS)
069-0362214-1575 - Optimizacija i dizajn vremensko-frekvencijskih distribucija (Sučić, Viktor, MZOS ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Tehnički fakultet, Rijeka

Profili:

Avatar Url Ivan Štajduhar (autor)

Avatar Url Bojana Dalbelo Bašić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com ac.els-cdn.com dx.doi.org

Citiraj ovu publikaciju:

Štajduhar, Ivan; Dalbelo-Bašić, Bojana
Uncensoring censored data for machine learning: A likelihood-based approach // Expert systems with applications, 39 (2012), 8; 7226-7234 doi:10.1016/j.eswa.2012.01.054 (međunarodna recenzija, članak, znanstveni)
Štajduhar, I. & Dalbelo-Bašić, B. (2012) Uncensoring censored data for machine learning: A likelihood-based approach. Expert systems with applications, 39 (8), 7226-7234 doi:10.1016/j.eswa.2012.01.054.
@article{article, author = {\v{S}tajduhar, Ivan and Dalbelo-Ba\v{s}i\'{c}, Bojana}, year = {2012}, pages = {7226-7234}, DOI = {10.1016/j.eswa.2012.01.054}, keywords = {survival analysis, censoring, machine learning, denoising, data likelihood, classification}, journal = {Expert systems with applications}, doi = {10.1016/j.eswa.2012.01.054}, volume = {39}, number = {8}, issn = {0957-4174}, title = {Uncensoring censored data for machine learning: A likelihood-based approach}, keyword = {survival analysis, censoring, machine learning, denoising, data likelihood, classification} }
@article{article, author = {\v{S}tajduhar, Ivan and Dalbelo-Ba\v{s}i\'{c}, Bojana}, year = {2012}, pages = {7226-7234}, DOI = {10.1016/j.eswa.2012.01.054}, keywords = {survival analysis, censoring, machine learning, denoising, data likelihood, classification}, journal = {Expert systems with applications}, doi = {10.1016/j.eswa.2012.01.054}, volume = {39}, number = {8}, issn = {0957-4174}, title = {Uncensoring censored data for machine learning: A likelihood-based approach}, keyword = {survival analysis, censoring, machine learning, denoising, data likelihood, classification} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font