Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 56736

A general theorem on approximate maximum likelihood estimation


Huzak, Miljenko
A general theorem on approximate maximum likelihood estimation // Glasnik matematički, 36(56) (2001), 139-153 (podatak o recenziji nije dostupan, članak, znanstveni)


CROSBI ID: 56736 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A general theorem on approximate maximum likelihood estimation

Autori
Huzak, Miljenko

Izvornik
Glasnik matematički (0017-095X) 36(56) (2001); 139-153

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Parameter estimation; consistent estimators; approximate likelihood function.

Sažetak
In this paper a version of the general theorem on approximate maximum likelihood estimation is proved. We assume that there exists a log-likelihood function $L(\vartheta )$ and a sequence $(L_n (\vartheta ))$ of its estimates defined on some statistical structure parameterized by $\vartheta$ from an open set $\Theta\subseteq\R^d$, and dominated by a probability $\Pb$. It is proved that if $L(\vartheta )$ and $L_n (\vartheta )$ are random functions of class $C^2 (\Theta )$ such that there exists a unique point $\hat{\vartheta}\in\Theta$ of the global maximum of $L(\vartheta )$ and the first and second derivatives of $L_n = (\vartheta )$ with respect to $\vartheta$ converge to the corresponding derivatives of $L(\vartheta )$ uniformly on compacts in $\Theta$ with the order $O_{\Pb}(\gamma_n )$, $\lim_n\gamma_n =3D0$, then there exists a sequence of $\Theta$-valued random variables $\hat{\vartheta}_n$ which converges to $\hat{\vartheta}$ with the order $O_\Pb (\gamma_n )$ and such that $\hat{\vartheta}_n$ is a stationary point of $L_n (\vartheta )$ in asymptotic sense. Moreover, we prove that under two more assumption on $L$ and $L_n$, such estimators could be chosen to be measurable with respect to the $\sigma$-algebra generated by $L_n (\vartheta )$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
037008

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Miljenko Huzak (autor)


Citiraj ovu publikaciju:

Huzak, Miljenko
A general theorem on approximate maximum likelihood estimation // Glasnik matematički, 36(56) (2001), 139-153 (podatak o recenziji nije dostupan, članak, znanstveni)
Huzak, M. (2001) A general theorem on approximate maximum likelihood estimation. Glasnik matematički, 36(56), 139-153.
@article{article, author = {Huzak, Miljenko}, year = {2001}, pages = {139-153}, keywords = {Parameter estimation, consistent estimators, approximate likelihood function.}, journal = {Glasnik matemati\v{c}ki}, volume = {36(56)}, issn = {0017-095X}, title = {A general theorem on approximate maximum likelihood estimation}, keyword = {Parameter estimation, consistent estimators, approximate likelihood function.} }
@article{article, author = {Huzak, Miljenko}, year = {2001}, pages = {139-153}, keywords = {Parameter estimation, consistent estimators, approximate likelihood function.}, journal = {Glasnik matemati\v{c}ki}, volume = {36(56)}, issn = {0017-095X}, title = {A general theorem on approximate maximum likelihood estimation}, keyword = {Parameter estimation, consistent estimators, approximate likelihood function.} }

Uključenost u ostale bibliografske baze podataka::


  • Mathematical Reviews





Contrast
Increase Font
Decrease Font
Dyslexic Font