Pregled bibliografske jedinice broj: 56736
A general theorem on approximate maximum likelihood estimation
A general theorem on approximate maximum likelihood estimation // Glasnik matematički, 36(56) (2001), 139-153 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 56736 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A general theorem on approximate maximum likelihood estimation
Autori
Huzak, Miljenko
Izvornik
Glasnik matematički (0017-095X) 36(56)
(2001);
139-153
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Parameter estimation; consistent estimators; approximate likelihood function.
Sažetak
In this paper a version of the general theorem on approximate maximum likelihood estimation is proved. We assume that there exists a log-likelihood function $L(\vartheta )$ and a sequence $(L_n (\vartheta ))$ of its estimates defined on some statistical structure parameterized by $\vartheta$ from an open set $\Theta\subseteq\R^d$, and dominated by a probability $\Pb$. It is proved that if $L(\vartheta )$ and $L_n (\vartheta )$ are random functions of class $C^2 (\Theta )$ such that there exists a unique point $\hat{\vartheta}\in\Theta$ of the global maximum of $L(\vartheta )$ and the first and second derivatives of $L_n = (\vartheta )$ with respect to $\vartheta$ converge to the corresponding derivatives of $L(\vartheta )$ uniformly on compacts in $\Theta$ with the order $O_{\Pb}(\gamma_n )$, $\lim_n\gamma_n =3D0$, then there exists a sequence of $\Theta$-valued random variables $\hat{\vartheta}_n$ which converges to $\hat{\vartheta}$ with the order $O_\Pb (\gamma_n )$ and such that $\hat{\vartheta}_n$ is a stationary point of $L_n (\vartheta )$ in asymptotic sense. Moreover, we prove that under two more assumption on $L$ and $L_n$, such estimators could be chosen to be measurable with respect to the $\sigma$-algebra generated by $L_n (\vartheta )$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037008
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Miljenko Huzak
(autor)
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews