Pregled bibliografske jedinice broj: 566372
On the family of elliptic curves Y^2 = X^3 - T^2X + 1
On the family of elliptic curves Y^2 = X^3 - T^2X + 1 // Glasnik Matematicki, 47 (2012), 1; 81-93 doi:10.3336/gm.47.1.06 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 566372 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the family of elliptic curves Y^2 = X^3 - T^2X + 1
Autori
Tadić, Petra
Izvornik
Glasnik Matematicki (0017-095X) 47
(2012), 1;
81-93
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
elliptic surface; elliptic curve; parametrization; function field; rank; family of elliptic curves; torsion
Sažetak
Let E be the elliptic curve over Q(T) given by the equation E : Y^2 = X^3 - T^2X + 1: We prove that the torsion subgroup of the group E(C(T)) is trivial, rank Q(T)(E) = 3 and rank C(T)(E) = 4. We find a parametrization of E of rank at least four over the function field Q(a, i, s, n, k) where s^2 = i^3 - a^2i. From this we get a family of rank >= 5 over the field of rational functions in two variables and a family of rank >= 6 over an elliptic curve of positive rank. We also found particular elliptic curves with rank >= 11.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372781-2821 - Diofantske jednadžbe i eliptičke krivulje (Dujella, Andrej, MZOS ) ( CroRIS)
Ustanove:
Geotehnički fakultet, Varaždin
Profili:
Petra Rihter Tadić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts