Pregled bibliografske jedinice broj: 566219
A new sharp double inequality for generalized Heronian, harmonic and power means
A new sharp double inequality for generalized Heronian, harmonic and power means // Computers & mathematics with applications, 64 (2012), 4; 664-671 doi:10.1016/j.camwa.2011.12.080 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 566219 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A new sharp double inequality for generalized Heronian, harmonic and power means
Autori
Čižmešija, Aleksandra
Izvornik
Computers & mathematics with applications (0898-1221) 64
(2012), 4;
664-671
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
arithmetic mean; geometric mean; harmonic mean; power mean; generalized Heronian mean; sharp inequality
Sažetak
For a real number $p$, let $M_p(a, b)$ denote the usual power mean of order $p$ of positive real numbers $a$ and $b$. Further, let $H=M_{; ; ; -1}; ; ; $ and $He_{; ; ; \alpha}; ; ; = \alpha M_0 + (1 - \alpha) M_1$ for $\alpha \in [0, 1]$. We prove that the double mixed-means inequality \[ M_{; ; ; -\frac{; ; ; \alpha}; ; ; {; ; ; 2}; ; ; }; ; ; (a, b) \leq \frac{; ; ; 1}; ; ; {; ; ; 2}; ; ; [H(a, b) + He_{; ; ; \alpha}; ; ; (a, b)] \leq M_{; ; ; \frac{; ; ; \ln 2}; ; ; {; ; ; \ln 4 - \ln (1 - \alpha)}; ; ; }; ; ; (a, b) \] holds for all $\alpha \in [0, 1]$ and positive real numbers $a$ and $b$, with equality only for $a = b$, and that the orders of power means involved in its left-hand and right-hand side are optimal.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
058-1170889-1050 - Ocjene za funkcionale na prostorima funkcija (Perić, Ivan, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prehrambeno-biotehnološki fakultet, Zagreb
Profili:
Aleksandra Čižmešija
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet