Pregled bibliografske jedinice broj: 565118
1-D compressible viscous micropolar fluid model with non-homogeneous boundary conditions for temperature : a local existence theorem
1-D compressible viscous micropolar fluid model with non-homogeneous boundary conditions for temperature : a local existence theorem // Nonlinear analysis, 13 (2012), 4; 1844-1853 doi:10.1016/j.nonrwa.2011.12.012 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 565118 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
1-D compressible viscous micropolar fluid model with non-homogeneous boundary conditions for temperature : a local existence theorem
Autori
Mujaković, Nermina
Izvornik
Nonlinear analysis (1468-1218) 13
(2012), 4;
1844-1853
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
micropolar fluid; generalized solution; weak and strong convergences
Sažetak
We consider non-stationary 1-D flow of a compressible viscous and heat-conducting micropolar fluid, assuming that it is in thermodynamical sense perfect and polytropic. The homogeneous boundary conditions for velocity and microrotation, as well as non-homogeneous boundary conditions for temperature are assumed. Using the Faedo-Galerkin method we prove a local-in-time existence of generalized solution.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0693014-2765 - Matematička analiza kompozitnih i tankih struktura (Tutek, Zvonimir, MZOS ) ( CroRIS)
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku
Profili:
Nermina Mujaković
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus