Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 565061

Lapidus zeta functions of fractal sets


Lapidus, Michel L.; Radunović, Goran; Žubrinić, Darko
Lapidus zeta functions of fractal sets // First International Meeting PISRS - PISRS Conference 2011 - Analysis, Fractal Geometry, Dynamical Systems and Economics
Messina, Italija, 2011. (plenarno, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 565061 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Lapidus zeta functions of fractal sets

Autori
Lapidus, Michel L. ; Radunović, Goran ; Žubrinić, Darko

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Skup
First International Meeting PISRS - PISRS Conference 2011 - Analysis, Fractal Geometry, Dynamical Systems and Economics

Mjesto i datum
Messina, Italija, 08.11.2011. - 12.11.2011

Vrsta sudjelovanja
Plenarno

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Lapidus zeta function; fractal set; fractal; string; the upper box dimension; Minkowski content; residue
(Lapidus zeta function; fractal set; fractal string; the upper box dimension; Minkowski content; residue)

Sažetak
A new class of zeta functions has been discovered by M.L.\ Lapidus in Catania in 2009. It can serve as a bridge between the geometric theory of fractal sets and complex analysis. To any nonempty bounded subset $A$ of $\eR^N$ he associated its zeta function $\zeta_A$ defined by $$ \zeta_A(s)=\int_{; ; A_\d}; ; d(x, A)^{; ; s-N}; ; dx. $$ Here $\d$ is a fixed positive number, $A_\d$ is the $\d$-neighbourhood of $A$, $d(x, A)$ is the Euclidean distance from $x$ to $A$, $s$ is the complex variable, and the integral is taken in the sense of Lebesgue. The basic result is that $\zeta_A(s)$ is analytic on the right half-plane $\re s>\ov\dim_BA$, where $\ov\dim_BA$ is the upper box dimension of $A$. Furthermore, the bound is optimal. We indicate some ingredients of the proof of this result and illustrate it with several examples. These zeta functions enable us to extend the notion of complex dimensions for fractal strings, introduced by M.L.\ Lapidus in 1993, to arbitrary fractal sets. Our joint paper with Goran Radunovi\'c in preparation, entitled `Zeta functions of fractal sets in Euclidean spaces', is a continuation of previous studies of M.L.\ Lapidus and his collaborators on fractal strings and their generalizations over the past two decades. (45min lecture by Darko Žubrinić)

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
036-0361621-1291 - Nelinearna analiza diferencijalnih jednadžbi i dinamičkih sustava (Pašić, Mervan, MZO ) ( CroRIS)
036-0361621-3012 - Napredne strategije upravljanja i estimacije u složenim sustavima (Perić, Nedjeljko, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Darko Žubrinić (autor)

Avatar Url Goran Radunović (autor)


Citiraj ovu publikaciju:

Lapidus, Michel L.; Radunović, Goran; Žubrinić, Darko
Lapidus zeta functions of fractal sets // First International Meeting PISRS - PISRS Conference 2011 - Analysis, Fractal Geometry, Dynamical Systems and Economics
Messina, Italija, 2011. (plenarno, međunarodna recenzija, sažetak, znanstveni)
Lapidus, M., Radunović, G. & Žubrinić, D. (2011) Lapidus zeta functions of fractal sets. U: First International Meeting PISRS - PISRS Conference 2011 - Analysis, Fractal Geometry, Dynamical Systems and Economics.
@article{article, author = {Lapidus, Michel L. and Radunovi\'{c}, Goran and \v{Z}ubrini\'{c}, Darko}, year = {2011}, keywords = {Lapidus zeta function, fractal set, fractal, string, the upper box dimension, Minkowski content, residue}, title = {Lapidus zeta functions of fractal sets}, keyword = {Lapidus zeta function, fractal set, fractal, string, the upper box dimension, Minkowski content, residue}, publisherplace = {Messina, Italija} }
@article{article, author = {Lapidus, Michel L. and Radunovi\'{c}, Goran and \v{Z}ubrini\'{c}, Darko}, year = {2011}, keywords = {Lapidus zeta function, fractal set, fractal string, the upper box dimension, Minkowski content, residue}, title = {Lapidus zeta functions of fractal sets}, keyword = {Lapidus zeta function, fractal set, fractal string, the upper box dimension, Minkowski content, residue}, publisherplace = {Messina, Italija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font